Files
yoga/src/Layout.c

557 lines
19 KiB
C
Raw Normal View History

2014-04-18 16:00:53 -07:00
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <stdbool.h>
2014-04-18 16:00:53 -07:00
#include "Layout.h"
void init_css_node(css_node_t *node) {
node->style.align_items = CSS_ALIGN_FLEX_START;
// Some of the fields default to undefined and not 0
node->style.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
node->style.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
node->style.position[CSS_LEFT] = CSS_UNDEFINED;
node->style.position[CSS_TOP] = CSS_UNDEFINED;
node->style.position[CSS_RIGHT] = CSS_UNDEFINED;
node->style.position[CSS_BOTTOM] = CSS_UNDEFINED;
2014-04-18 09:32:13 -07:00
node->layout.dimensions[CSS_WIDTH] = CSS_UNDEFINED;
node->layout.dimensions[CSS_HEIGHT] = CSS_UNDEFINED;
}
css_node_t *new_css_node() {
css_node_t *node = calloc(1, sizeof(*node));
init_css_node(node);
return node;
}
2014-04-18 16:00:53 -07:00
void init_css_node_children(css_node_t *node, int children_count) {
node->children = calloc(children_count, sizeof(css_node_t));
2014-04-18 13:17:47 -07:00
for (int i = 0; i < children_count; ++i) {
init_css_node(&node->children[i]);
}
node->children_count = children_count;
}
void cleanup_css_node(css_node_t *node) {
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
cleanup_css_node(&node->children[i]);
}
2014-04-18 13:45:57 -07:00
free(node->children);
}
void free_css_node(css_node_t *node) {
cleanup_css_node(node);
free(node);
}
2014-04-18 13:17:47 -07:00
void indent(int n) {
for (int i = 0; i < n; ++i) {
printf(" ");
}
}
2014-04-18 16:00:53 -07:00
void print_number_0(const char *str, float number) {
if (number != 0) {
printf("%s: %g, ", str, number);
}
}
2014-04-18 16:00:53 -07:00
void print_number_nan(const char *str, float number) {
2014-04-18 13:41:14 -07:00
if (!isnan(number)) {
printf("%s: %g, ", str, number);
}
}
2014-04-18 16:00:53 -07:00
bool four_equal(float four[4]) {
return
four[0] == four[1] &&
four[0] == four[2] &&
four[0] == four[3];
}
2014-04-18 13:17:47 -07:00
void print_style(css_node_t *node, int level) {
indent(level);
printf("{");
if (node->style.flex_direction == CSS_FLEX_DIRECTION_ROW) {
printf("flexDirection: 'row', ");
}
if (node->style.justify_content == CSS_JUSTIFY_CENTER) {
printf("justifyContent: 'center', ");
} else if (node->style.justify_content == CSS_JUSTIFY_FLEX_END) {
printf("justifyContent: 'flex-end', ");
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_AROUND) {
printf("justifyContent: 'space-around', ");
} else if (node->style.justify_content == CSS_JUSTIFY_SPACE_BETWEEN) {
printf("justifyContent: 'space-between', ");
}
if (node->style.align_items == CSS_ALIGN_CENTER) {
printf("alignItems: 'center', ");
} else if (node->style.align_items == CSS_ALIGN_FLEX_END) {
printf("alignItems: 'flex-end', ");
} else if (node->style.align_items == CSS_ALIGN_STRETCH) {
printf("alignItems: 'stretch', ");
}
if (node->style.align_self == CSS_ALIGN_FLEX_START) {
printf("alignSelf: 'flex-start', ");
} else if (node->style.align_self == CSS_ALIGN_CENTER) {
printf("alignSelf: 'center', ");
} else if (node->style.align_self == CSS_ALIGN_FLEX_END) {
printf("alignSelf: 'flex-end', ");
} else if (node->style.align_self == CSS_ALIGN_STRETCH) {
printf("alignSelf: 'stretch', ");
}
if (node->style.flex == CSS_FLEX_ONE) {
printf("flex: 1, ");
}
if (four_equal(node->style.margin)) {
print_number_0("margin", node->style.margin[CSS_LEFT]);
} else {
print_number_0("marginLeft", node->style.margin[CSS_LEFT]);
print_number_0("marginRight", node->style.margin[CSS_RIGHT]);
print_number_0("marginTop", node->style.margin[CSS_TOP]);
print_number_0("marginBottom", node->style.margin[CSS_BOTTOM]);
}
if (four_equal(node->style.padding)) {
print_number_0("padding", node->style.margin[CSS_LEFT]);
} else {
print_number_0("paddingLeft", node->style.padding[CSS_LEFT]);
print_number_0("paddingRight", node->style.padding[CSS_RIGHT]);
print_number_0("paddingTop", node->style.padding[CSS_TOP]);
print_number_0("paddingBottom", node->style.padding[CSS_BOTTOM]);
}
2014-04-22 13:18:05 -07:00
if (four_equal(node->style.border)) {
print_number_0("borderWidth", node->style.border[CSS_LEFT]);
} else {
print_number_0("borderLeftWidth", node->style.border[CSS_LEFT]);
print_number_0("borderRightWidth", node->style.border[CSS_RIGHT]);
print_number_0("borderTopWidth", node->style.border[CSS_TOP]);
print_number_0("borderBottomWidth", node->style.border[CSS_BOTTOM]);
}
print_number_nan("width", node->style.dimensions[CSS_WIDTH]);
print_number_nan("height", node->style.dimensions[CSS_HEIGHT]);
print_number_nan("left", node->style.position[CSS_LEFT]);
print_number_nan("right", node->style.position[CSS_RIGHT]);
print_number_nan("top", node->style.position[CSS_TOP]);
print_number_nan("bottom", node->style.position[CSS_BOTTOM]);
if (node->children_count > 0) {
printf("children: [\n");
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
print_style(&node->children[i], level + 1);
}
indent(level);
printf("]},\n");
} else {
printf("},\n");
}
}
2014-04-18 13:17:47 -07:00
void print_layout(css_node_t *node, int level) {
indent(level);
printf("{");
printf("width: %g, ", node->layout.dimensions[CSS_WIDTH]);
printf("height: %g, ", node->layout.dimensions[CSS_HEIGHT]);
printf("top: %g, ", node->layout.position[CSS_TOP]);
printf("left: %g, ", node->layout.position[CSS_LEFT]);
if (node->children_count > 0) {
printf("children: [\n");
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
print_layout(&node->children[i], level + 1);
}
indent(level);
printf("]},\n");
} else {
printf("},\n");
}
}
2014-04-18 13:17:47 -07:00
int leading[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT
};
2014-04-18 13:17:47 -07:00
int trailing[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_BOTTOM,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_RIGHT
};
2014-04-18 13:17:47 -07:00
int pos[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_TOP,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_LEFT
};
2014-04-18 13:17:47 -07:00
int dim[2] = {
/* CSS_FLEX_DIRECTION_COLUMN = */ CSS_HEIGHT,
/* CSS_FLEX_DIRECTION_ROW = */ CSS_WIDTH
};
bool isUndefined(float value) {
2014-04-18 13:41:14 -07:00
return isnan(value);
}
2014-04-18 13:17:47 -07:00
float getMargin(css_node_t *node, int location) {
return node->style.margin[location];
}
2014-04-18 13:17:47 -07:00
float getPadding(css_node_t *node, int location) {
2014-04-22 13:18:05 -07:00
if (node->style.padding[location] >= 0) {
return node->style.padding[location];
}
return 0;
}
float getBorder(css_node_t *node, int location) {
if (node->style.border[location] >= 0) {
return node->style.border[location];
}
return 0;
}
float getPaddingAndBorder(css_node_t *node, int location) {
return getPadding(node, location) + getBorder(node, location);
}
float getMarginAxis(css_node_t *node, css_flex_direction_t axis) {
return getMargin(node, leading[axis]) + getMargin(node, trailing[axis]);
}
float getPaddingAndBorderAxis(css_node_t *node, css_flex_direction_t axis) {
return getPaddingAndBorder(node, leading[axis]) + getPaddingAndBorder(node, trailing[axis]);
}
css_position_type_t getPositionType(css_node_t *node) {
return node->style.position_type;
}
css_justify_t getJustifyContent(css_node_t *node) {
return node->style.justify_content;
}
css_align_t getAlignItem(css_node_t *node, css_node_t *child) {
if (child->style.align_self != CSS_ALIGN_AUTO) {
return child->style.align_self;
}
return node->style.align_items;
}
css_flex_direction_t getFlexDirection(css_node_t *node) {
return node->style.flex_direction;
}
css_flex_t getFlex(css_node_t *node) {
return node->style.flex;
}
2014-04-25 15:46:56 -07:00
bool isFlex(css_node_t *node) {
return getPositionType(node) == CSS_POSITION_RELATIVE && getFlex(node);
}
float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) {
return node->layout.dimensions[dim[axis]] +
getMargin(node, leading[axis]) +
getMargin(node, trailing[axis]);
}
2014-04-18 10:11:37 -07:00
bool isDimDefined(css_node_t *node, css_flex_direction_t axis) {
return !isUndefined(node->style.dimensions[dim[axis]]);
}
2014-04-22 13:18:05 -07:00
bool isPosDefined(css_node_t *node, css_position_t pos) {
return !isUndefined(node->style.position[pos]);
}
float getPosition(css_node_t *node, css_position_t pos) {
float result = node->style.position[pos];
if (!isUndefined(result)) {
return result;
}
return 0;
}
2014-04-25 15:46:56 -07:00
// When the user specifically sets a value for width or height
void setDimensionFromStyle(css_node_t *node, css_flex_direction_t axis) {
// The parent already computed us a width or height. We just skip it
if (!isUndefined(node->layout.dimensions[dim[axis]])) {
return;
}
// We only run if there's a width or height defined
if (!isDimDefined(node, axis)) {
return;
}
// The dimensions can never be smaller than the padding and border
node->layout.dimensions[dim[axis]] = fmaxf(
node->style.dimensions[dim[axis]],
getPaddingAndBorderAxis(node, axis)
);
}
// If both left and right are defined, then use left. Otherwise return
// +left or -right depending on which is defined.
float getRelativePosition(css_node_t *node, css_flex_direction_t axis) {
float lead = node->style.position[leading[axis]];
if (!isUndefined(lead)) {
return lead;
}
2014-04-19 14:43:51 -07:00
return -getPosition(node, trailing[axis]);
}
void layoutNode(css_node_t *node) {
css_flex_direction_t mainAxis = getFlexDirection(node);
css_flex_direction_t crossAxis = mainAxis == CSS_FLEX_DIRECTION_ROW ?
2014-04-18 10:37:01 -07:00
CSS_FLEX_DIRECTION_COLUMN :
CSS_FLEX_DIRECTION_ROW;
2014-04-25 15:46:56 -07:00
// Handle width and height style attributes
setDimensionFromStyle(node, mainAxis);
setDimensionFromStyle(node, crossAxis);
2014-04-25 15:46:56 -07:00
// The position is set by the parent, but we need to complete it with a
// delta composed of the margin and left/top/right/bottom
node->layout.position[leading[mainAxis]] += getMargin(node, leading[mainAxis]) +
getRelativePosition(node, mainAxis);
node->layout.position[leading[crossAxis]] += getMargin(node, leading[crossAxis]) +
getRelativePosition(node, crossAxis);
// <Loop A> Layout non flexible children and count children by type
2014-04-25 15:46:56 -07:00
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
float mainContentDim = 0;
2014-04-25 15:46:56 -07:00
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
2014-04-18 13:17:47 -07:00
int flexibleChildrenCount = 0;
2014-04-25 15:46:56 -07:00
int nonFlexibleChildrenCount = 0;
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = &node->children[i];
2014-04-25 15:46:56 -07:00
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node->
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
// This is the main recursive call. We layout non flexible children.
layoutNode(child);
2014-04-25 15:46:56 -07:00
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
2014-04-22 13:18:05 -07:00
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
2014-04-25 15:46:56 -07:00
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
2014-04-22 13:18:05 -07:00
mainContentDim += getDimWithMargin(child, mainAxis);
}
}
}
2014-04-25 15:46:56 -07:00
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
2014-04-25 15:46:56 -07:00
// If the dimensions of the current node is defined by its children, they
// are all going to be packed together and we don't need to compute
// anything.
2014-04-18 10:22:38 -07:00
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
2014-04-25 15:46:56 -07:00
// The remaining available space that's needs to be allocated
float remainingMainDim = node->layout.dimensions[dim[mainAxis]] -
2014-04-22 13:18:05 -07:00
getPaddingAndBorderAxis(node, mainAxis) -
mainContentDim;
2014-04-25 15:46:56 -07:00
// If there are flexible children in the mix, they are going to fill the
// remaining space
if (flexibleChildrenCount) {
float flexibleMainDim = remainingMainDim / flexibleChildrenCount;
2014-04-25 15:46:56 -07:00
// The non flexible children can overflow the container, in this case
// we should just assume that there is no space available.
2014-04-22 13:18:05 -07:00
if (flexibleMainDim < 0) {
flexibleMainDim = 0;
}
2014-04-25 15:46:56 -07:00
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = &node->children[i];
2014-04-25 15:46:56 -07:00
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim +
getPaddingAndBorderAxis(child, mainAxis);
// And we recursively call the layout algorithm for this child
layoutNode(child);
}
}
2014-04-25 15:46:56 -07:00
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
css_justify_t justifyContent = getJustifyContent(node);
if (justifyContent == CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent == CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
2014-04-18 10:37:01 -07:00
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
2014-04-25 15:46:56 -07:00
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
2014-04-25 15:46:56 -07:00
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
}
2014-04-25 15:46:56 -07:00
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
float crossDim = 0;
2014-04-25 15:46:56 -07:00
float mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = &node->children[i];
2014-04-25 15:46:56 -07:00
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
2014-04-22 13:18:05 -07:00
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else {
2014-04-25 15:46:56 -07:00
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child->layout.position[pos[mainAxis]] += mainDim;
2014-04-22 13:18:05 -07:00
}
2014-04-25 15:46:56 -07:00
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
}
}
2014-04-22 17:37:55 -07:00
2014-04-25 15:46:56 -07:00
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
node->layout.dimensions[dim[mainAxis]] = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
2014-04-25 15:46:56 -07:00
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
2014-04-25 15:46:56 -07:00
node->layout.dimensions[dim[crossAxis]] = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
2014-04-25 15:46:56 -07:00
// <Loop D> Position elements in the cross axis
2014-04-18 13:17:47 -07:00
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = &node->children[i];
2014-04-22 13:18:05 -07:00
2014-04-25 15:46:56 -07:00
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
2014-04-22 13:18:05 -07:00
2014-04-25 15:46:56 -07:00
} else {
2014-04-22 13:18:05 -07:00
float leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
2014-04-25 15:46:56 -07:00
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
css_align_t alignItem = getAlignItem(node, child);
if (alignItem == CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem == CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child->layout.dimensions[dim[crossAxis]] = fmaxf(
node->layout.dimensions[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = node->layout.dimensions[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
2014-04-22 13:18:05 -07:00
}
}
2014-04-25 15:46:56 -07:00
// And we apply the position
2014-04-22 13:18:05 -07:00
child->layout.position[pos[crossAxis]] += leadingCrossDim;
}
}
}