Initial implementation of flexWrap

This commit is contained in:
Christopher Chedeau
2014-12-12 12:03:31 +00:00
parent 28243156e4
commit 10fb645777
12 changed files with 930 additions and 607 deletions

View File

@@ -111,6 +111,10 @@ var computeLayout = (function() {
);
}
function isFlexWrap(node) {
return node.style.flexWrap === 'wrap';
}
function getDimWithMargin(node, axis) {
return node.layout[dim[axis]] + getMarginAxis(node, axis);
}
@@ -298,97 +302,50 @@ var computeLayout = (function() {
}
}
// <Loop A> Layout non flexible children and count children by type
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
var/*float*/ mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
var/*int*/ flexibleChildrenCount = 0;
var/*float*/ totalFlexible = 0;
var/*int*/ nonFlexibleChildrenCount = 0;
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!isUndefined(node.layout[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node.layout[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth);
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
mainContentDim += getDimWithMargin(child, mainAxis);
}
}
}
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
var/*float*/ leadingMainDim = 0;
var/*float*/ betweenMainDim = 0;
var/*float*/ definedMainDim = fmaxf(mainContentDim, 0);
var/*float*/ definedMainDim = CSS_UNDEFINED;
if (!isUndefined(node.layout[dim[mainAxis]])) {
definedMainDim = node.layout[dim[mainAxis]] -
getPaddingAndBorderAxis(node, mainAxis);
getPaddingAndBorderAxis(node, mainAxis);
}
// The remaining available space that needs to be allocated
var/*float*/ remainingMainDim = definedMainDim - mainContentDim;
// If there are flexible children in the mix, they are going to fill the
// remaining space
if (flexibleChildrenCount !== 0) {
var/*float*/ flexibleMainDim = remainingMainDim / totalFlexible;
// We want to execute the next two loops one per line with flex-wrap
var/*int*/ startLine = 0;
var/*int*/ endLine = 0;
var/*int*/ nextLine = 0;
// We aggregate the total dimensions of the container in those two variables
var/*float*/ linesCrossDim = 0;
var/*float*/ linesMainDim = 0;
while (endLine !== node.children.length) {
// <Loop A> Layout non flexible children and count children by type
// The non flexible children can overflow the container, in this case
// we should just assume that there is no space available.
if (flexibleMainDim < 0) {
flexibleMainDim = 0;
}
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (var/*int*/ i = 0; i < node.children.length; ++i) {
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
var/*float*/ mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
var/*int*/ flexibleChildrenCount = 0;
var/*float*/ totalFlexible = 0;
var/*int*/ nonFlexibleChildrenCount = 0;
for (var/*int*/ i = startLine; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child.layout[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
var/*float*/ nextContentDim = 0;
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!isUndefined(node.layout[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing
@@ -401,74 +358,234 @@ var computeLayout = (function() {
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
// This is the main recursive call. We layout non flexible children.
if (nextLine === 0) {
layoutNode(child, maxWidth);
}
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
}
// The element we are about to add would make us go to the next line
if (isFlexWrap(node) &&
!isUndefined(node.layout[dim[mainAxis]]) &&
mainContentDim + nextContentDim > definedMainDim) {
nextLine = i + 1;
break;
}
nextLine = 0;
mainContentDim += nextContentDim;
endLine = i + 1;
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
var/*css_justify_t*/ justifyContent = getJustifyContent(node);
if (justifyContent === CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent === CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent === CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop B> Layout flexible children and allocate empty space
// <Loop C> Position elements in the main axis and compute dimensions
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
var/*float*/ leadingMainDim = 0;
var/*float*/ betweenMainDim = 0;
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
var/*float*/ crossDim = 0;
var/*float*/ mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
// The remaining available space that needs to be allocated
var/*float*/ remainingMainDim = 0;
if (!isUndefined(node.layout[dim[mainAxis]])) {
remainingMainDim = definedMainDim - mainContentDim;
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child.layout[pos[mainAxis]] += mainDim;
remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
// If there are flexible children in the mix, they are going to fill the
// remaining space
if (flexibleChildrenCount !== 0) {
var/*float*/ flexibleMainDim = remainingMainDim / totalFlexible;
// The non flexible children can overflow the container, in this case
// we should just assume that there is no space available.
if (flexibleMainDim < 0) {
flexibleMainDim = 0;
}
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child.layout[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node.layout[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
}
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
var/*css_justify_t*/ justifyContent = getJustifyContent(node);
if (justifyContent === CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent === CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent === CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
var/*float*/ crossDim = 0;
var/*float*/ mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child.layout[pos[mainAxis]] += mainDim;
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
}
}
var/*float*/ containerMainAxis = node.layout[dim[mainAxis]];
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node.layout[dim[mainAxis]])) {
containerMainAxis = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
var/*float*/ containerCrossAxis = node.layout[dim[crossAxis]];
if (isUndefined(node.layout[dim[crossAxis]])) {
containerCrossAxis = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
var/*float*/ leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
var/*css_align_t*/ alignItem = getAlignItem(node, child);
if (alignItem === CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem === CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child.layout[dim[crossAxis]] = fmaxf(
containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
var/*float*/ remainingCrossDim = containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem === CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child.layout[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
}
}
linesCrossDim += crossDim;
linesMainDim = fmaxf(linesMainDim, mainDim);
startLine = endLine;
}
// If the user didn't specify a width or height, and it has not been set
@@ -477,7 +594,7 @@ var computeLayout = (function() {
node.layout[dim[mainAxis]] = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
linesMainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
@@ -488,67 +605,11 @@ var computeLayout = (function() {
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
linesCrossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
var/*float*/ leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
var/*css_align_t*/ alignItem = getAlignItem(node, child);
if (alignItem === CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem === CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child.layout[dim[crossAxis]] = fmaxf(
node.layout[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
var/*float*/ remainingCrossDim = node.layout[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem === CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child.layout[pos[crossAxis]] += leadingCrossDim;
}
}
// <Loop E> Calculate dimensions for absolutely positioned elements
for (var/*int*/ i = 0; i < node.children.length; ++i) {
@@ -557,7 +618,7 @@ var computeLayout = (function() {
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
// left and right or top and bottom).
for (var/*int*/ ii = 0; ii < 2; ii++) {
var/*css_flex_direction_t*/ axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
var/*css_flex_direction_t*/ axis = (ii !== 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node.layout[dim[axis]]) &&
!isDimDefined(child, axis) &&
isPosDefined(child, leading[axis]) &&
@@ -574,7 +635,7 @@ var computeLayout = (function() {
}
}
for (var/*int*/ ii = 0; ii < 2; ii++) {
var/*css_flex_direction_t*/ axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
var/*css_flex_direction_t*/ axis = (ii !== 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (isPosDefined(child, trailing[axis]) &&
!isPosDefined(child, leading[axis])) {
child.layout[leading[axis]] =