Initial implementation of flexWrap

This commit is contained in:
Christopher Chedeau
2014-12-12 12:03:31 +00:00
parent 28243156e4
commit 10fb645777
12 changed files with 930 additions and 607 deletions

View File

@@ -14,6 +14,7 @@ function __transpileToJavaCommon(code) {
.replace(/CSS_FLEX_DIRECTION_/g, 'CSSFlexDirection.') .replace(/CSS_FLEX_DIRECTION_/g, 'CSSFlexDirection.')
.replace(/css_align_t/g, 'CSSAlign') .replace(/css_align_t/g, 'CSSAlign')
.replace(/CSS_ALIGN_/g, 'CSSAlign.') .replace(/CSS_ALIGN_/g, 'CSSAlign.')
.replace(/CSS_WRAP/g, 'CSSWrap.WRAP')
.replace(/CSS_POSITION_/g, 'CSSPositionType.') .replace(/CSS_POSITION_/g, 'CSSPositionType.')
.replace(/css_justify_t/g, 'CSSJustify') .replace(/css_justify_t/g, 'CSSJustify')
.replace(/CSS_JUSTIFY_/g, 'CSSJustify.') .replace(/CSS_JUSTIFY_/g, 'CSSJustify.')

View File

@@ -276,6 +276,10 @@ static bool isFlex(css_node_t *node) {
); );
} }
static bool isFlexWrap(css_node_t *node) {
return node->style.flex_wrap == CSS_WRAP;
}
static float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) { static float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) {
return node->layout.dimensions[dim[axis]] + return node->layout.dimensions[dim[axis]] +
getMargin(node, leading[axis]) + getMargin(node, leading[axis]) +
@@ -425,97 +429,50 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth) {
} }
} }
// <Loop A> Layout non flexible children and count children by type float definedMainDim = CSS_UNDEFINED;
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
float mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
int flexibleChildrenCount = 0;
float totalFlexible = 0;
int nonFlexibleChildrenCount = 0;
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node->
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
float maxWidth = CSS_UNDEFINED;
if (mainAxis == CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth);
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
mainContentDim += getDimWithMargin(child, mainAxis);
}
}
}
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
float definedMainDim = fmaxf(mainContentDim, 0);
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) { if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
definedMainDim = node->layout.dimensions[dim[mainAxis]] - definedMainDim = node->layout.dimensions[dim[mainAxis]] -
getPaddingAndBorderAxis(node, mainAxis); getPaddingAndBorderAxis(node, mainAxis);
} }
// The remaining available space that needs to be allocated
float remainingMainDim = definedMainDim - mainContentDim;
// If there are flexible children in the mix, they are going to fill the // We want to execute the next two loops one per line with flex-wrap
// remaining space int startLine = 0;
if (flexibleChildrenCount != 0) { int endLine = 0;
float flexibleMainDim = remainingMainDim / totalFlexible; int nextLine = 0;
// We aggregate the total dimensions of the container in those two variables
float linesCrossDim = 0;
float linesMainDim = 0;
while (endLine != node->children_count) {
// <Loop A> Layout non flexible children and count children by type
// The non flexible children can overflow the container, in this case // mainContentDim is accumulation of the dimensions and margin of all the
// we should just assume that there is no space available. // non flexible children. This will be used in order to either set the
if (flexibleMainDim < 0) { // dimensions of the node if none already exist, or to compute the
flexibleMainDim = 0; // remaining space left for the flexible children.
} float mainContentDim = 0;
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that // There are three kind of children, non flexible, flexible and absolute.
// contains only flexible children. // We need to know how many there are in order to distribute the space.
for (int i = 0; i < node->children_count; ++i) { int flexibleChildrenCount = 0;
float totalFlexible = 0;
int nonFlexibleChildrenCount = 0;
for (int i = startLine; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i); css_node_t* child = node->get_child(node->context, i);
if (isFlex(child)) { float nextContentDim = 0;
// At this point we know the final size of the element in the main
// dimension
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node->
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
float maxWidth = CSS_UNDEFINED; float maxWidth = CSS_UNDEFINED;
if (mainAxis == CSS_FLEX_DIRECTION_ROW) { if (mainAxis == CSS_FLEX_DIRECTION_ROW) {
// do nothing // do nothing
@@ -528,74 +485,234 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth) {
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW); getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} }
// And we recursively call the layout algorithm for this child // This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth); if (nextLine == 0) {
layoutNode(child, maxWidth);
}
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
} }
// The element we are about to add would make us go to the next line
if (isFlexWrap(node) &&
!isUndefined(node->layout.dimensions[dim[mainAxis]]) &&
mainContentDim + nextContentDim > definedMainDim) {
nextLine = i + 1;
break;
}
nextLine = 0;
mainContentDim += nextContentDim;
endLine = i + 1;
} }
// We use justifyContent to figure out how to allocate the remaining // <Loop B> Layout flexible children and allocate empty space
// space available
} else {
css_justify_t justifyContent = getJustifyContent(node);
if (justifyContent == CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent == CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop C> Position elements in the main axis and compute dimensions // In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
// At this point, all the children have their dimensions set. We need to // The remaining available space that needs to be allocated
// find their position. In order to do that, we accumulate data in float remainingMainDim = 0;
// variables that are also useful to compute the total dimensions of the if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
// container! remainingMainDim = definedMainDim - mainContentDim;
float crossDim = 0;
float mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else { } else {
// If the child is position absolute (without top/left) or relative, remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
// we put it at the current accumulated offset.
child->layout.position[pos[mainAxis]] += mainDim;
} }
// Now that we placed the element, we need to update the variables // If there are flexible children in the mix, they are going to fill the
// We only need to do that for relative elements. Absolute elements // remaining space
// do not take part in that phase. if (flexibleChildrenCount != 0) {
if (getPositionType(child) == CSS_POSITION_RELATIVE) { float flexibleMainDim = remainingMainDim / totalFlexible;
// The main dimension is the sum of all the elements dimension plus
// the spacing. // The non flexible children can overflow the container, in this case
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis); // we should just assume that there is no space available.
// The cross dimension is the max of the elements dimension since there if (flexibleMainDim < 0) {
// can only be one element in that cross dimension. flexibleMainDim = 0;
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis)); }
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
float maxWidth = CSS_UNDEFINED;
if (mainAxis == CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node->layout.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
}
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
css_justify_t justifyContent = getJustifyContent(node);
if (justifyContent == CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent == CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
} }
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
float crossDim = 0;
float mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child->layout.position[pos[mainAxis]] += mainDim;
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
}
}
float containerMainAxis = node->layout.dimensions[dim[mainAxis]];
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
containerMainAxis = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
float containerCrossAxis = node->layout.dimensions[dim[crossAxis]];
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
containerCrossAxis = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (int i = startLine; i < endLine; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
float leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
css_align_t alignItem = getAlignItem(node, child);
if (alignItem == CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem == CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child->layout.dimensions[dim[crossAxis]] = fmaxf(
containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child->layout.position[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
}
}
linesCrossDim += crossDim;
linesMainDim = fmaxf(linesMainDim, mainDim);
startLine = endLine;
} }
// If the user didn't specify a width or height, and it has not been set // If the user didn't specify a width or height, and it has not been set
@@ -604,7 +721,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth) {
node->layout.dimensions[dim[mainAxis]] = fmaxf( node->layout.dimensions[dim[mainAxis]] = fmaxf(
// We're missing the last padding at this point to get the final // We're missing the last padding at this point to get the final
// dimension // dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]), linesMainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders // We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis) getPaddingAndBorderAxis(node, mainAxis)
); );
@@ -615,67 +732,11 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth) {
// For the cross dim, we add both sides at the end because the value // For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values // is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise // can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis), linesCrossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis) getPaddingAndBorderAxis(node, crossAxis)
); );
} }
// <Loop D> Position elements in the cross axis
for (int i = 0; i < node->children_count; ++i) {
css_node_t* child = node->get_child(node->context, i);
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
float leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
css_align_t alignItem = getAlignItem(node, child);
if (alignItem == CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem == CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child->layout.dimensions[dim[crossAxis]] = fmaxf(
node->layout.dimensions[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = node->layout.dimensions[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child->layout.position[pos[crossAxis]] += leadingCrossDim;
}
}
// <Loop E> Calculate dimensions for absolutely positioned elements // <Loop E> Calculate dimensions for absolutely positioned elements
for (int i = 0; i < node->children_count; ++i) { for (int i = 0; i < node->children_count; ++i) {

View File

@@ -42,6 +42,11 @@ typedef enum {
CSS_POSITION_ABSOLUTE CSS_POSITION_ABSOLUTE
} css_position_type_t; } css_position_type_t;
typedef enum {
CSS_NOWRAP = 0,
CSS_WRAP
} css_wrap_type_t;
// Note: left and top are shared between position[2] and position[4], so // Note: left and top are shared between position[2] and position[4], so
// they have to be before right and bottom. // they have to be before right and bottom.
typedef enum { typedef enum {
@@ -80,6 +85,7 @@ typedef struct {
css_align_t align_items; css_align_t align_items;
css_align_t align_self; css_align_t align_self;
css_position_type_t position_type; css_position_type_t position_type;
css_wrap_type_t flex_wrap;
float flex; float flex;
float margin[4]; float margin[4];
float position[4]; float position[4];

View File

@@ -111,6 +111,10 @@ var computeLayout = (function() {
); );
} }
function isFlexWrap(node) {
return node.style.flexWrap === 'wrap';
}
function getDimWithMargin(node, axis) { function getDimWithMargin(node, axis) {
return node.layout[dim[axis]] + getMarginAxis(node, axis); return node.layout[dim[axis]] + getMarginAxis(node, axis);
} }
@@ -298,97 +302,50 @@ var computeLayout = (function() {
} }
} }
// <Loop A> Layout non flexible children and count children by type var/*float*/ definedMainDim = CSS_UNDEFINED;
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
var/*float*/ mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
var/*int*/ flexibleChildrenCount = 0;
var/*float*/ totalFlexible = 0;
var/*int*/ nonFlexibleChildrenCount = 0;
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!isUndefined(node.layout[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node.layout[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth);
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
mainContentDim += getDimWithMargin(child, mainAxis);
}
}
}
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
var/*float*/ leadingMainDim = 0;
var/*float*/ betweenMainDim = 0;
var/*float*/ definedMainDim = fmaxf(mainContentDim, 0);
if (!isUndefined(node.layout[dim[mainAxis]])) { if (!isUndefined(node.layout[dim[mainAxis]])) {
definedMainDim = node.layout[dim[mainAxis]] - definedMainDim = node.layout[dim[mainAxis]] -
getPaddingAndBorderAxis(node, mainAxis); getPaddingAndBorderAxis(node, mainAxis);
} }
// The remaining available space that needs to be allocated
var/*float*/ remainingMainDim = definedMainDim - mainContentDim;
// If there are flexible children in the mix, they are going to fill the // We want to execute the next two loops one per line with flex-wrap
// remaining space var/*int*/ startLine = 0;
if (flexibleChildrenCount !== 0) { var/*int*/ endLine = 0;
var/*float*/ flexibleMainDim = remainingMainDim / totalFlexible; var/*int*/ nextLine = 0;
// We aggregate the total dimensions of the container in those two variables
var/*float*/ linesCrossDim = 0;
var/*float*/ linesMainDim = 0;
while (endLine !== node.children.length) {
// <Loop A> Layout non flexible children and count children by type
// The non flexible children can overflow the container, in this case // mainContentDim is accumulation of the dimensions and margin of all the
// we should just assume that there is no space available. // non flexible children. This will be used in order to either set the
if (flexibleMainDim < 0) { // dimensions of the node if none already exist, or to compute the
flexibleMainDim = 0; // remaining space left for the flexible children.
} var/*float*/ mainContentDim = 0;
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that // There are three kind of children, non flexible, flexible and absolute.
// contains only flexible children. // We need to know how many there are in order to distribute the space.
for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*int*/ flexibleChildrenCount = 0;
var/*float*/ totalFlexible = 0;
var/*int*/ nonFlexibleChildrenCount = 0;
for (var/*int*/ i = startLine; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i]; var/*css_node_t**/ child = node.children[i];
if (isFlex(child)) { var/*float*/ nextContentDim = 0;
// At this point we know the final size of the element in the main
// dimension
child.layout[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!isUndefined(node.layout[dim[mainAxis]]) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible += getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
var/*float*/ maxWidth = CSS_UNDEFINED; var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) { if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing // do nothing
@@ -401,74 +358,234 @@ var computeLayout = (function() {
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW); getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} }
// And we recursively call the layout algorithm for this child // This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth); if (nextLine === 0) {
layoutNode(child, maxWidth);
}
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
} }
// The element we are about to add would make us go to the next line
if (isFlexWrap(node) &&
!isUndefined(node.layout[dim[mainAxis]]) &&
mainContentDim + nextContentDim > definedMainDim) {
nextLine = i + 1;
break;
}
nextLine = 0;
mainContentDim += nextContentDim;
endLine = i + 1;
} }
// We use justifyContent to figure out how to allocate the remaining // <Loop B> Layout flexible children and allocate empty space
// space available
} else {
var/*css_justify_t*/ justifyContent = getJustifyContent(node);
if (justifyContent === CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent === CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent === CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop C> Position elements in the main axis and compute dimensions // In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
var/*float*/ leadingMainDim = 0;
var/*float*/ betweenMainDim = 0;
// At this point, all the children have their dimensions set. We need to // The remaining available space that needs to be allocated
// find their position. In order to do that, we accumulate data in var/*float*/ remainingMainDim = 0;
// variables that are also useful to compute the total dimensions of the if (!isUndefined(node.layout[dim[mainAxis]])) {
// container! remainingMainDim = definedMainDim - mainContentDim;
var/*float*/ crossDim = 0;
var/*float*/ mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else { } else {
// If the child is position absolute (without top/left) or relative, remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
// we put it at the current accumulated offset.
child.layout[pos[mainAxis]] += mainDim;
} }
// Now that we placed the element, we need to update the variables // If there are flexible children in the mix, they are going to fill the
// We only need to do that for relative elements. Absolute elements // remaining space
// do not take part in that phase. if (flexibleChildrenCount !== 0) {
if (getPositionType(child) === CSS_POSITION_RELATIVE) { var/*float*/ flexibleMainDim = remainingMainDim / totalFlexible;
// The main dimension is the sum of all the elements dimension plus
// the spacing. // The non flexible children can overflow the container, in this case
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis); // we should just assume that there is no space available.
// The cross dimension is the max of the elements dimension since there if (flexibleMainDim < 0) {
// can only be one element in that cross dimension. flexibleMainDim = 0;
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis)); }
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
child.layout[dim[mainAxis]] = flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis);
var/*float*/ maxWidth = CSS_UNDEFINED;
if (mainAxis === CSS_FLEX_DIRECTION_ROW) {
// do nothing
} else if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) {
maxWidth = node.layout[dim[CSS_FLEX_DIRECTION_ROW]] -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSS_FLEX_DIRECTION_ROW) -
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
}
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
var/*css_justify_t*/ justifyContent = getJustifyContent(node);
if (justifyContent === CSS_JUSTIFY_FLEX_START) {
// Do nothing
} else if (justifyContent === CSS_JUSTIFY_CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent === CSS_JUSTIFY_FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) {
remainingMainDim = fmaxf(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 !== 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
} }
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
var/*float*/ crossDim = 0;
var/*float*/ mainDim = leadingMainDim +
getPaddingAndBorder(node, leading[mainAxis]);
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[mainAxis])) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
getBorder(node, leading[mainAxis]) +
getMargin(child, leading[mainAxis]);
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child.layout[pos[mainAxis]] += mainDim;
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
}
}
var/*float*/ containerMainAxis = node.layout[dim[mainAxis]];
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (isUndefined(node.layout[dim[mainAxis]])) {
containerMainAxis = fmaxf(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
var/*float*/ containerCrossAxis = node.layout[dim[crossAxis]];
if (isUndefined(node.layout[dim[crossAxis]])) {
containerCrossAxis = fmaxf(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (var/*int*/ i = startLine; i < endLine; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
var/*float*/ leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
var/*css_align_t*/ alignItem = getAlignItem(node, child);
if (alignItem === CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem === CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child.layout[dim[crossAxis]] = fmaxf(
containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
var/*float*/ remainingCrossDim = containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem === CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child.layout[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
}
}
linesCrossDim += crossDim;
linesMainDim = fmaxf(linesMainDim, mainDim);
startLine = endLine;
} }
// If the user didn't specify a width or height, and it has not been set // If the user didn't specify a width or height, and it has not been set
@@ -477,7 +594,7 @@ var computeLayout = (function() {
node.layout[dim[mainAxis]] = fmaxf( node.layout[dim[mainAxis]] = fmaxf(
// We're missing the last padding at this point to get the final // We're missing the last padding at this point to get the final
// dimension // dimension
mainDim + getPaddingAndBorder(node, trailing[mainAxis]), linesMainDim + getPaddingAndBorder(node, trailing[mainAxis]),
// We can never assign a width smaller than the padding and borders // We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis) getPaddingAndBorderAxis(node, mainAxis)
); );
@@ -488,67 +605,11 @@ var computeLayout = (function() {
// For the cross dim, we add both sides at the end because the value // For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values // is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise // can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis), linesCrossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis) getPaddingAndBorderAxis(node, crossAxis)
); );
} }
// <Loop D> Position elements in the cross axis
for (var/*int*/ i = 0; i < node.children.length; ++i) {
var/*css_node_t**/ child = node.children[i];
if (getPositionType(child) === CSS_POSITION_ABSOLUTE &&
isPosDefined(child, leading[crossAxis])) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
getBorder(node, leading[crossAxis]) +
getMargin(child, leading[crossAxis]);
} else {
var/*float*/ leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) === CSS_POSITION_RELATIVE) {
var/*css_align_t*/ alignItem = getAlignItem(node, child);
if (alignItem === CSS_ALIGN_FLEX_START) {
// Do nothing
} else if (alignItem === CSS_ALIGN_STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
child.layout[dim[crossAxis]] = fmaxf(
node.layout[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
);
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
var/*float*/ remainingCrossDim = node.layout[dim[crossAxis]] -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem === CSS_ALIGN_CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSS_ALIGN_FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
}
// And we apply the position
child.layout[pos[crossAxis]] += leadingCrossDim;
}
}
// <Loop E> Calculate dimensions for absolutely positioned elements // <Loop E> Calculate dimensions for absolutely positioned elements
for (var/*int*/ i = 0; i < node.children.length; ++i) { for (var/*int*/ i = 0; i < node.children.length; ++i) {
@@ -557,7 +618,7 @@ var computeLayout = (function() {
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both // Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
// left and right or top and bottom). // left and right or top and bottom).
for (var/*int*/ ii = 0; ii < 2; ii++) { for (var/*int*/ ii = 0; ii < 2; ii++) {
var/*css_flex_direction_t*/ axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; var/*css_flex_direction_t*/ axis = (ii !== 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (!isUndefined(node.layout[dim[axis]]) && if (!isUndefined(node.layout[dim[axis]]) &&
!isDimDefined(child, axis) && !isDimDefined(child, axis) &&
isPosDefined(child, leading[axis]) && isPosDefined(child, leading[axis]) &&
@@ -574,7 +635,7 @@ var computeLayout = (function() {
} }
} }
for (var/*int*/ ii = 0; ii < 2; ii++) { for (var/*int*/ ii = 0; ii < 2; ii++) {
var/*css_flex_direction_t*/ axis = (ii != 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN; var/*css_flex_direction_t*/ axis = (ii !== 0) ? CSS_FLEX_DIRECTION_ROW : CSS_FLEX_DIRECTION_COLUMN;
if (isPosDefined(child, trailing[axis]) && if (isPosDefined(child, trailing[axis]) &&
!isPosDefined(child, leading[axis])) { !isPosDefined(child, leading[axis])) {
child.layout[leading[axis]] = child.layout[leading[axis]] =

View File

@@ -3671,6 +3671,59 @@ int main()
test("should layout with children of a contain with left", root_node, root_layout); test("should layout with children of a contain with left", root_node, root_layout);
} }
{
css_node_t *root_node = new_test_css_node();
{
css_node_t *node_0 = root_node;
node_0->style.flex_direction = CSS_FLEX_DIRECTION_ROW;
node_0->style.flex_wrap = CSS_WRAP;
node_0->style.dimensions[CSS_WIDTH] = 100;
init_css_node_children(node_0, 3);
{
css_node_t *node_1;
node_1 = node_0->get_child(node_0->context, 0);
node_1->style.dimensions[CSS_WIDTH] = 40;
node_1->style.dimensions[CSS_HEIGHT] = 10;
node_1 = node_0->get_child(node_0->context, 1);
node_1->style.dimensions[CSS_WIDTH] = 40;
node_1->style.dimensions[CSS_HEIGHT] = 10;
node_1 = node_0->get_child(node_0->context, 2);
node_1->style.dimensions[CSS_WIDTH] = 40;
node_1->style.dimensions[CSS_HEIGHT] = 10;
}
}
css_node_t *root_layout = new_test_css_node();
{
css_node_t *node_0 = root_layout;
node_0->layout.position[CSS_TOP] = 0;
node_0->layout.position[CSS_LEFT] = 0;
node_0->layout.dimensions[CSS_WIDTH] = 100;
node_0->layout.dimensions[CSS_HEIGHT] = 20;
init_css_node_children(node_0, 3);
{
css_node_t *node_1;
node_1 = node_0->get_child(node_0->context, 0);
node_1->layout.position[CSS_TOP] = 0;
node_1->layout.position[CSS_LEFT] = 0;
node_1->layout.dimensions[CSS_WIDTH] = 40;
node_1->layout.dimensions[CSS_HEIGHT] = 10;
node_1 = node_0->get_child(node_0->context, 1);
node_1->layout.position[CSS_TOP] = 0;
node_1->layout.position[CSS_LEFT] = 40;
node_1->layout.dimensions[CSS_WIDTH] = 40;
node_1->layout.dimensions[CSS_HEIGHT] = 10;
node_1 = node_0->get_child(node_0->context, 2);
node_1->layout.position[CSS_TOP] = 10;
node_1->layout.position[CSS_LEFT] = 0;
node_1->layout.dimensions[CSS_WIDTH] = 40;
node_1->layout.dimensions[CSS_HEIGHT] = 10;
}
}
test("should layout flex-wrap", root_node, root_layout);
}
/** END_GENERATED **/ /** END_GENERATED **/
return tests_finished(); return tests_finished();
} }

View File

@@ -1144,12 +1144,11 @@ describe('Layout', function() {
); );
}); });
xit('should layout flex-wrap', function() { it('should layout flex-wrap', function() {
testLayout( testLayout(
{style: {flexWrap: 'wrap', flexDirection: 'row', width: 100}, children: [ {style: {flexWrap: 'wrap', flexDirection: 'row', width: 100}, children: [
{style: {width: 40, height: 10}}, {style: {width: 40, height: 10}},
{style: {width: 40, height: 10}}, {style: {width: 40, height: 10}},
{style: {flex: 1}},
{style: {width: 40, height: 10}}, {style: {width: 40, height: 10}},
]}, ]},
{width: 100, height: 20, top: 0, left: 0, children: [ {width: 100, height: 20, top: 0, left: 0, children: [

View File

@@ -287,6 +287,13 @@ public class CSSNode {
} }
} }
public void setWrap(CSSWrap flexWrap) {
if (!valuesEqual(style.flexWrap, flexWrap)) {
style.flexWrap = flexWrap;
dirty();
}
}
public void setFlex(float flex) { public void setFlex(float flex) {
if (!valuesEqual(style.flex, flex)) { if (!valuesEqual(style.flex, flex)) {
style.flex = flex; style.flex = flex;

View File

@@ -23,6 +23,7 @@ public class CSSStyle {
public CSSAlign alignItems = CSSAlign.STRETCH; public CSSAlign alignItems = CSSAlign.STRETCH;
public CSSAlign alignSelf = CSSAlign.AUTO; public CSSAlign alignSelf = CSSAlign.AUTO;
public CSSPositionType positionType = CSSPositionType.RELATIVE; public CSSPositionType positionType = CSSPositionType.RELATIVE;
public CSSWrap flexWrap = CSSWrap.NOWRAP;
public float flex; public float flex;
public float[] margin = new float[4]; public float[] margin = new float[4];

View File

@@ -0,0 +1,14 @@
/**
* Copyright (c) 2014, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
package com.facebook.csslayout;
public enum CSSWrap {
NOWRAP,
WRAP,
}

View File

@@ -235,6 +235,10 @@ public class LayoutEngine {
return node.style.justifyContent; return node.style.justifyContent;
} }
private static boolean isFlexWrap(CSSNode node) {
return node.style.flexWrap == CSSWrap.WRAP;
}
private static boolean isFlex(CSSNode node) { private static boolean isFlex(CSSNode node) {
return getPositionType(node) == CSSPositionType.RELATIVE && getFlex(node) > 0; return getPositionType(node) == CSSPositionType.RELATIVE && getFlex(node) > 0;
} }
@@ -371,97 +375,50 @@ public class LayoutEngine {
} }
} }
// <Loop A> Layout non flexible children and count children by type float definedMainDim = CSSConstants.UNDEFINED;
// mainContentDim is accumulation of the dimensions and margin of all the
// non flexible children. This will be used in order to either set the
// dimensions of the node if none already exist, or to compute the
// remaining space left for the flexible children.
float mainContentDim = 0;
// There are three kind of children, non flexible, flexible and absolute.
// We need to know how many there are in order to distribute the space.
int flexibleChildrenCount = 0;
float totalFlexible = 0;
int nonFlexibleChildrenCount = 0;
for (int i = 0; i < node.getChildCount(); ++i) {
CSSNode child = node.getChildAt(i);
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis))) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible = totalFlexible + getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
mainContentDim = mainContentDim + getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
float maxWidth = CSSConstants.UNDEFINED;
if (mainAxis == CSSFlexDirection.ROW) {
// do nothing
} else if (isDimDefined(node, CSSFlexDirection.ROW)) {
maxWidth = getLayoutDimension(node, getDim(CSSFlexDirection.ROW)) -
getPaddingAndBorderAxis(node, CSSFlexDirection.ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSSFlexDirection.ROW) -
getPaddingAndBorderAxis(node, CSSFlexDirection.ROW);
}
// This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth);
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) == CSSPositionType.RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
mainContentDim = mainContentDim + getDimWithMargin(child, mainAxis);
}
}
}
// <Loop B> Layout flexible children and allocate empty space
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
float definedMainDim = Math.max(mainContentDim, 0);
if (!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis)))) { if (!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis)))) {
definedMainDim = getLayoutDimension(node, getDim(mainAxis)) - definedMainDim = getLayoutDimension(node, getDim(mainAxis)) -
getPaddingAndBorderAxis(node, mainAxis); getPaddingAndBorderAxis(node, mainAxis);
} }
// The remaining available space that needs to be allocated
float remainingMainDim = definedMainDim - mainContentDim;
// If there are flexible children in the mix, they are going to fill the // We want to execute the next two loops one per line with flex-wrap
// remaining space int startLine = 0;
if (flexibleChildrenCount != 0) { int endLine = 0;
float flexibleMainDim = remainingMainDim / totalFlexible; int nextLine = 0;
// We aggregate the total dimensions of the container in those two variables
float linesCrossDim = 0;
float linesMainDim = 0;
while (endLine != node.getChildCount()) {
// <Loop A> Layout non flexible children and count children by type
// The non flexible children can overflow the container, in this case // mainContentDim is accumulation of the dimensions and margin of all the
// we should just assume that there is no space available. // non flexible children. This will be used in order to either set the
if (flexibleMainDim < 0) { // dimensions of the node if none already exist, or to compute the
flexibleMainDim = 0; // remaining space left for the flexible children.
} float mainContentDim = 0;
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that // There are three kind of children, non flexible, flexible and absolute.
// contains only flexible children. // We need to know how many there are in order to distribute the space.
for (int i = 0; i < node.getChildCount(); ++i) { int flexibleChildrenCount = 0;
float totalFlexible = 0;
int nonFlexibleChildrenCount = 0;
for (int i = startLine; i < node.getChildCount(); ++i) {
CSSNode child = node.getChildAt(i); CSSNode child = node.getChildAt(i);
if (isFlex(child)) { float nextContentDim = 0;
// At this point we know the final size of the element in the main
// dimension
setLayoutDimension(child, getDim(mainAxis), flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis));
// It only makes sense to consider a child flexible if we have a computed
// dimension for the node.
if (!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis))) && isFlex(child)) {
flexibleChildrenCount++;
totalFlexible = totalFlexible + getFlex(child);
// Even if we don't know its exact size yet, we already know the padding,
// border and margin. We'll use this partial information to compute the
// remaining space.
nextContentDim = getPaddingAndBorderAxis(child, mainAxis) +
getMarginAxis(child, mainAxis);
} else {
float maxWidth = CSSConstants.UNDEFINED; float maxWidth = CSSConstants.UNDEFINED;
if (mainAxis == CSSFlexDirection.ROW) { if (mainAxis == CSSFlexDirection.ROW) {
// do nothing // do nothing
@@ -474,74 +431,234 @@ public class LayoutEngine {
getPaddingAndBorderAxis(node, CSSFlexDirection.ROW); getPaddingAndBorderAxis(node, CSSFlexDirection.ROW);
} }
// And we recursively call the layout algorithm for this child // This is the main recursive call. We layout non flexible children.
layoutNode(child, maxWidth); if (nextLine == 0) {
layoutNode(child, maxWidth);
}
// Absolute positioned elements do not take part of the layout, so we
// don't use them to compute mainContentDim
if (getPositionType(child) == CSSPositionType.RELATIVE) {
nonFlexibleChildrenCount++;
// At this point we know the final size and margin of the element.
nextContentDim = getDimWithMargin(child, mainAxis);
}
} }
// The element we are about to add would make us go to the next line
if (isFlexWrap(node) &&
!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis))) &&
mainContentDim + nextContentDim > definedMainDim) {
nextLine = i + 1;
break;
}
nextLine = 0;
mainContentDim = mainContentDim + nextContentDim;
endLine = i + 1;
} }
// We use justifyContent to figure out how to allocate the remaining // <Loop B> Layout flexible children and allocate empty space
// space available
} else {
CSSJustify justifyContent = getJustifyContent(node);
if (justifyContent == CSSJustify.FLEX_START) {
// Do nothing
} else if (justifyContent == CSSJustify.CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent == CSSJustify.FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSSJustify.SPACE_BETWEEN) {
remainingMainDim = Math.max(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSSJustify.SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
}
// <Loop C> Position elements in the main axis and compute dimensions // In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
// At this point, all the children have their dimensions set. We need to // The remaining available space that needs to be allocated
// find their position. In order to do that, we accumulate data in float remainingMainDim = 0;
// variables that are also useful to compute the total dimensions of the if (!CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis)))) {
// container! remainingMainDim = definedMainDim - mainContentDim;
float crossDim = 0;
float mainDim = leadingMainDim +
getPaddingAndBorder(node, getLeading(mainAxis));
for (int i = 0; i < node.getChildCount(); ++i) {
CSSNode child = node.getChildAt(i);
if (getPositionType(child) == CSSPositionType.ABSOLUTE &&
isPosDefined(child, getLeading(mainAxis))) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
setLayoutPosition(child, getPos(mainAxis), getPosition(child, getLeading(mainAxis)) +
getBorder(node, getLeading(mainAxis)) +
getMargin(child, getLeading(mainAxis)));
} else { } else {
// If the child is position absolute (without top/left) or relative, remainingMainDim = Math.max(mainContentDim, 0) - mainContentDim;
// we put it at the current accumulated offset.
setLayoutPosition(child, getPos(mainAxis), getLayoutPosition(child, getPos(mainAxis)) + mainDim);
} }
// Now that we placed the element, we need to update the variables // If there are flexible children in the mix, they are going to fill the
// We only need to do that for relative elements. Absolute elements // remaining space
// do not take part in that phase. if (flexibleChildrenCount != 0) {
if (getPositionType(child) == CSSPositionType.RELATIVE) { float flexibleMainDim = remainingMainDim / totalFlexible;
// The main dimension is the sum of all the elements dimension plus
// the spacing. // The non flexible children can overflow the container, in this case
mainDim = mainDim + betweenMainDim + getDimWithMargin(child, mainAxis); // we should just assume that there is no space available.
// The cross dimension is the max of the elements dimension since there if (flexibleMainDim < 0) {
// can only be one element in that cross dimension. flexibleMainDim = 0;
crossDim = Math.max(crossDim, getDimWithMargin(child, crossAxis)); }
// We iterate over the full array and only apply the action on flexible
// children. This is faster than actually allocating a new array that
// contains only flexible children.
for (int i = startLine; i < endLine; ++i) {
CSSNode child = node.getChildAt(i);
if (isFlex(child)) {
// At this point we know the final size of the element in the main
// dimension
setLayoutDimension(child, getDim(mainAxis), flexibleMainDim * getFlex(child) +
getPaddingAndBorderAxis(child, mainAxis));
float maxWidth = CSSConstants.UNDEFINED;
if (mainAxis == CSSFlexDirection.ROW) {
// do nothing
} else if (isDimDefined(node, CSSFlexDirection.ROW)) {
maxWidth = getLayoutDimension(node, getDim(CSSFlexDirection.ROW)) -
getPaddingAndBorderAxis(node, CSSFlexDirection.ROW);
} else {
maxWidth = parentMaxWidth -
getMarginAxis(node, CSSFlexDirection.ROW) -
getPaddingAndBorderAxis(node, CSSFlexDirection.ROW);
}
// And we recursively call the layout algorithm for this child
layoutNode(child, maxWidth);
}
}
// We use justifyContent to figure out how to allocate the remaining
// space available
} else {
CSSJustify justifyContent = getJustifyContent(node);
if (justifyContent == CSSJustify.FLEX_START) {
// Do nothing
} else if (justifyContent == CSSJustify.CENTER) {
leadingMainDim = remainingMainDim / 2;
} else if (justifyContent == CSSJustify.FLEX_END) {
leadingMainDim = remainingMainDim;
} else if (justifyContent == CSSJustify.SPACE_BETWEEN) {
remainingMainDim = Math.max(remainingMainDim, 0);
if (flexibleChildrenCount + nonFlexibleChildrenCount - 1 != 0) {
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSSJustify.SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingMainDim /
(flexibleChildrenCount + nonFlexibleChildrenCount);
leadingMainDim = betweenMainDim / 2;
}
} }
// <Loop C> Position elements in the main axis and compute dimensions
// At this point, all the children have their dimensions set. We need to
// find their position. In order to do that, we accumulate data in
// variables that are also useful to compute the total dimensions of the
// container!
float crossDim = 0;
float mainDim = leadingMainDim +
getPaddingAndBorder(node, getLeading(mainAxis));
for (int i = startLine; i < endLine; ++i) {
CSSNode child = node.getChildAt(i);
if (getPositionType(child) == CSSPositionType.ABSOLUTE &&
isPosDefined(child, getLeading(mainAxis))) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
setLayoutPosition(child, getPos(mainAxis), getPosition(child, getLeading(mainAxis)) +
getBorder(node, getLeading(mainAxis)) +
getMargin(child, getLeading(mainAxis)));
} else {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
setLayoutPosition(child, getPos(mainAxis), getLayoutPosition(child, getPos(mainAxis)) + mainDim);
}
// Now that we placed the element, we need to update the variables
// We only need to do that for relative elements. Absolute elements
// do not take part in that phase.
if (getPositionType(child) == CSSPositionType.RELATIVE) {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim = mainDim + betweenMainDim + getDimWithMargin(child, mainAxis);
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = Math.max(crossDim, getDimWithMargin(child, crossAxis));
}
}
float containerMainAxis = getLayoutDimension(node, getDim(mainAxis));
// If the user didn't specify a width or height, and it has not been set
// by the container, then we set it via the children.
if (CSSConstants.isUndefined(getLayoutDimension(node, getDim(mainAxis)))) {
containerMainAxis = Math.max(
// We're missing the last padding at this point to get the final
// dimension
mainDim + getPaddingAndBorder(node, getTrailing(mainAxis)),
// We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis)
);
}
float containerCrossAxis = getLayoutDimension(node, getDim(crossAxis));
if (CSSConstants.isUndefined(getLayoutDimension(node, getDim(crossAxis)))) {
containerCrossAxis = Math.max(
// For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis)
);
}
// <Loop D> Position elements in the cross axis
for (int i = startLine; i < endLine; ++i) {
CSSNode child = node.getChildAt(i);
if (getPositionType(child) == CSSPositionType.ABSOLUTE &&
isPosDefined(child, getLeading(crossAxis))) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
setLayoutPosition(child, getPos(crossAxis), getPosition(child, getLeading(crossAxis)) +
getBorder(node, getLeading(crossAxis)) +
getMargin(child, getLeading(crossAxis)));
} else {
float leadingCrossDim = getPaddingAndBorder(node, getLeading(crossAxis));
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSSPositionType.RELATIVE) {
CSSAlign alignItem = getAlignItem(node, child);
if (alignItem == CSSAlign.FLEX_START) {
// Do nothing
} else if (alignItem == CSSAlign.STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
setLayoutDimension(child, getDim(crossAxis), Math.max(
containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
));
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = containerCrossAxis -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSSAlign.CENTER) {
leadingCrossDim = leadingCrossDim + remainingCrossDim / 2;
} else { // CSSAlign.FLEX_END
leadingCrossDim = leadingCrossDim + remainingCrossDim;
}
}
}
// And we apply the position
setLayoutPosition(child, getPos(crossAxis), getLayoutPosition(child, getPos(crossAxis)) + linesCrossDim + leadingCrossDim);
}
}
linesCrossDim = linesCrossDim + crossDim;
linesMainDim = Math.max(linesMainDim, mainDim);
startLine = endLine;
} }
// If the user didn't specify a width or height, and it has not been set // If the user didn't specify a width or height, and it has not been set
@@ -550,7 +667,7 @@ public class LayoutEngine {
setLayoutDimension(node, getDim(mainAxis), Math.max( setLayoutDimension(node, getDim(mainAxis), Math.max(
// We're missing the last padding at this point to get the final // We're missing the last padding at this point to get the final
// dimension // dimension
mainDim + getPaddingAndBorder(node, getTrailing(mainAxis)), linesMainDim + getPaddingAndBorder(node, getTrailing(mainAxis)),
// We can never assign a width smaller than the padding and borders // We can never assign a width smaller than the padding and borders
getPaddingAndBorderAxis(node, mainAxis) getPaddingAndBorderAxis(node, mainAxis)
)); ));
@@ -561,67 +678,11 @@ public class LayoutEngine {
// For the cross dim, we add both sides at the end because the value // For the cross dim, we add both sides at the end because the value
// is aggregate via a max function. Intermediate negative values // is aggregate via a max function. Intermediate negative values
// can mess this computation otherwise // can mess this computation otherwise
crossDim + getPaddingAndBorderAxis(node, crossAxis), linesCrossDim + getPaddingAndBorderAxis(node, crossAxis),
getPaddingAndBorderAxis(node, crossAxis) getPaddingAndBorderAxis(node, crossAxis)
)); ));
} }
// <Loop D> Position elements in the cross axis
for (int i = 0; i < node.getChildCount(); ++i) {
CSSNode child = node.getChildAt(i);
if (getPositionType(child) == CSSPositionType.ABSOLUTE &&
isPosDefined(child, getLeading(crossAxis))) {
// In case the child is absolutely positionned and has a
// top/left/bottom/right being set, we override all the previously
// computed positions to set it correctly.
setLayoutPosition(child, getPos(crossAxis), getPosition(child, getLeading(crossAxis)) +
getBorder(node, getLeading(crossAxis)) +
getMargin(child, getLeading(crossAxis)));
} else {
float leadingCrossDim = getPaddingAndBorder(node, getLeading(crossAxis));
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
if (getPositionType(child) == CSSPositionType.RELATIVE) {
CSSAlign alignItem = getAlignItem(node, child);
if (alignItem == CSSAlign.FLEX_START) {
// Do nothing
} else if (alignItem == CSSAlign.STRETCH) {
// You can only stretch if the dimension has not already been set
// previously.
if (!isDimDefined(child, crossAxis)) {
setLayoutDimension(child, getDim(crossAxis), Math.max(
getLayoutDimension(node, getDim(crossAxis)) -
getPaddingAndBorderAxis(node, crossAxis) -
getMarginAxis(child, crossAxis),
// You never want to go smaller than padding
getPaddingAndBorderAxis(child, crossAxis)
));
}
} else {
// The remaining space between the parent dimensions+padding and child
// dimensions+margin.
float remainingCrossDim = getLayoutDimension(node, getDim(crossAxis)) -
getPaddingAndBorderAxis(node, crossAxis) -
getDimWithMargin(child, crossAxis);
if (alignItem == CSSAlign.CENTER) {
leadingCrossDim = leadingCrossDim + remainingCrossDim / 2;
} else { // CSSAlign.FLEX_END
leadingCrossDim = leadingCrossDim + remainingCrossDim;
}
}
}
// And we apply the position
setLayoutPosition(child, getPos(crossAxis), getLayoutPosition(child, getPos(crossAxis)) + leadingCrossDim);
}
}
// <Loop E> Calculate dimensions for absolutely positioned elements // <Loop E> Calculate dimensions for absolutely positioned elements
for (int i = 0; i < node.getChildCount(); ++i) { for (int i = 0; i < node.getChildCount(); ++i) {

View File

@@ -3931,5 +3931,60 @@ public class LayoutEngineTest {
test("should layout with children of a contain with left", root_node, root_layout); test("should layout with children of a contain with left", root_node, root_layout);
} }
@Test
public void testCase93()
{
TestCSSNode root_node = new TestCSSNode();
{
TestCSSNode node_0 = root_node;
node_0.style.flexDirection = CSSFlexDirection.ROW;
node_0.style.flexWrap = CSSWrap.WRAP;
node_0.style.width = 100;
addChildren(node_0, 3);
{
TestCSSNode node_1;
node_1 = node_0.getChildAt(0);
node_1.style.width = 40;
node_1.style.height = 10;
node_1 = node_0.getChildAt(1);
node_1.style.width = 40;
node_1.style.height = 10;
node_1 = node_0.getChildAt(2);
node_1.style.width = 40;
node_1.style.height = 10;
}
}
TestCSSNode root_layout = new TestCSSNode();
{
TestCSSNode node_0 = root_layout;
node_0.layout.y = 0;
node_0.layout.x = 0;
node_0.layout.width = 100;
node_0.layout.height = 20;
addChildren(node_0, 3);
{
TestCSSNode node_1;
node_1 = node_0.getChildAt(0);
node_1.layout.y = 0;
node_1.layout.x = 0;
node_1.layout.width = 40;
node_1.layout.height = 10;
node_1 = node_0.getChildAt(1);
node_1.layout.y = 0;
node_1.layout.x = 40;
node_1.layout.width = 40;
node_1.layout.height = 10;
node_1 = node_0.getChildAt(2);
node_1.layout.y = 10;
node_1.layout.x = 0;
node_1.layout.width = 40;
node_1.layout.height = 10;
}
}
test("should layout flex-wrap", root_node, root_layout);
}
/** END_GENERATED **/ /** END_GENERATED **/
} }

View File

@@ -141,6 +141,10 @@ function printLayout(test) {
'relative': 'CSS_POSITION_RELATIVE', 'relative': 'CSS_POSITION_RELATIVE',
'absolute': 'CSS_POSITION_ABSOLUTE' 'absolute': 'CSS_POSITION_ABSOLUTE'
}); });
addEnum(node, 'flexWrap', 'flex_wrap', {
'nowrap': 'CSS_NOWRAP',
'wrap': 'CSS_WRAP'
});
addFloat('positive', node, 'flex', 'flex'); addFloat('positive', node, 'flex', 'flex');
addFloat('positive', node, 'width', 'dimensions[CSS_WIDTH]'); addFloat('positive', node, 'width', 'dimensions[CSS_WIDTH]');
addFloat('positive', node, 'height', 'dimensions[CSS_HEIGHT]'); addFloat('positive', node, 'height', 'dimensions[CSS_HEIGHT]');