Inline immutable values in layout algorithm
Store immutable values from the node being laid out to avoid unnecessary method invocations during layout calculation. This gives us a 3%-5% performance boost in my benchmarks on Android.
This commit is contained in:
161
src/Layout.c
161
src/Layout.c
@@ -376,18 +376,6 @@ static float getPaddingAndBorderAxis(css_node_t *node, css_flex_direction_t axis
|
||||
return getLeadingPaddingAndBorder(node, axis) + getTrailingPaddingAndBorder(node, axis);
|
||||
}
|
||||
|
||||
static css_position_type_t getPositionType(css_node_t *node) {
|
||||
return node->style.position_type;
|
||||
}
|
||||
|
||||
static css_justify_t getJustifyContent(css_node_t *node) {
|
||||
return node->style.justify_content;
|
||||
}
|
||||
|
||||
static css_align_t getAlignContent(css_node_t *node) {
|
||||
return node->style.align_content;
|
||||
}
|
||||
|
||||
static css_align_t getAlignItem(css_node_t *node, css_node_t *child) {
|
||||
if (child->style.align_self != CSS_ALIGN_AUTO) {
|
||||
return child->style.align_self;
|
||||
@@ -435,7 +423,7 @@ static float getFlex(css_node_t *node) {
|
||||
|
||||
static bool isFlex(css_node_t *node) {
|
||||
return (
|
||||
getPositionType(node) == CSS_POSITION_RELATIVE &&
|
||||
node->style.position_type == CSS_POSITION_RELATIVE &&
|
||||
getFlex(node) > 0
|
||||
);
|
||||
}
|
||||
@@ -553,23 +541,29 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
node->layout.position[trailing[crossAxis]] += getTrailingMargin(node, crossAxis) +
|
||||
getRelativePosition(node, crossAxis);
|
||||
|
||||
// Inline immutable values from the target node to avoid excessive method
|
||||
// invocations during the layout calculation.
|
||||
int childCount = node->children_count;
|
||||
float paddingAndBorderAxisResolvedRow = getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
|
||||
if (isMeasureDefined(node)) {
|
||||
bool isResolvedRowDimDefined = !isUndefined(node->layout.dimensions[dim[resolvedRowAxis]]);
|
||||
|
||||
float width = CSS_UNDEFINED;
|
||||
if (isDimDefined(node, resolvedRowAxis)) {
|
||||
width = node->style.dimensions[CSS_WIDTH];
|
||||
} else if (!isUndefined(node->layout.dimensions[dim[resolvedRowAxis]])) {
|
||||
} else if (isResolvedRowDimDefined) {
|
||||
width = node->layout.dimensions[dim[resolvedRowAxis]];
|
||||
} else {
|
||||
width = parentMaxWidth -
|
||||
getMarginAxis(node, resolvedRowAxis);
|
||||
}
|
||||
width -= getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
width -= paddingAndBorderAxisResolvedRow;
|
||||
|
||||
// We only need to give a dimension for the text if we haven't got any
|
||||
// for it computed yet. It can either be from the style attribute or because
|
||||
// the element is flexible.
|
||||
bool isRowUndefined = !isDimDefined(node, resolvedRowAxis) &&
|
||||
isUndefined(node->layout.dimensions[dim[resolvedRowAxis]]);
|
||||
bool isRowUndefined = !isDimDefined(node, resolvedRowAxis) && !isResolvedRowDimDefined;
|
||||
bool isColumnUndefined = !isDimDefined(node, CSS_FLEX_DIRECTION_COLUMN) &&
|
||||
isUndefined(node->layout.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]]);
|
||||
|
||||
@@ -582,40 +576,50 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
);
|
||||
if (isRowUndefined) {
|
||||
node->layout.dimensions[CSS_WIDTH] = measureDim.dimensions[CSS_WIDTH] +
|
||||
getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
paddingAndBorderAxisResolvedRow;
|
||||
}
|
||||
if (isColumnUndefined) {
|
||||
node->layout.dimensions[CSS_HEIGHT] = measureDim.dimensions[CSS_HEIGHT] +
|
||||
getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN);
|
||||
}
|
||||
}
|
||||
if (node->children_count == 0) {
|
||||
if (childCount == 0) {
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
bool isNodeFlexWrap = isFlexWrap(node);
|
||||
|
||||
float leadingPaddingAndBorderMain = getLeadingPaddingAndBorder(node, mainAxis);
|
||||
float leadingPaddingAndBorderCross = getLeadingPaddingAndBorder(node, crossAxis);
|
||||
float paddingAndBorderAxisMain = getPaddingAndBorderAxis(node, mainAxis);
|
||||
float paddingAndBorderAxisCross = getPaddingAndBorderAxis(node, crossAxis);
|
||||
|
||||
bool isMainDimDefined = !isUndefined(node->layout.dimensions[dim[mainAxis]]);
|
||||
bool isCrossDimDefined = !isUndefined(node->layout.dimensions[dim[crossAxis]]);
|
||||
bool isMainRowDirection = isRowDirection(mainAxis);
|
||||
|
||||
int i;
|
||||
int ii;
|
||||
css_node_t* child;
|
||||
css_flex_direction_t axis;
|
||||
|
||||
// Pre-fill some dimensions straight from the parent
|
||||
for (i = 0; i < node->children_count; ++i) {
|
||||
for (i = 0; i < childCount; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
// Pre-fill cross axis dimensions when the child is using stretch before
|
||||
// we call the recursive layout pass
|
||||
if (getAlignItem(node, child) == CSS_ALIGN_STRETCH &&
|
||||
getPositionType(child) == CSS_POSITION_RELATIVE &&
|
||||
!isUndefined(node->layout.dimensions[dim[crossAxis]]) &&
|
||||
child->style.position_type == CSS_POSITION_RELATIVE &&
|
||||
isCrossDimDefined &&
|
||||
!isDimDefined(child, crossAxis)) {
|
||||
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
boundAxis(child, crossAxis, node->layout.dimensions[dim[crossAxis]] -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getMarginAxis(child, crossAxis)),
|
||||
paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)),
|
||||
// You never want to go smaller than padding
|
||||
getPaddingAndBorderAxis(child, crossAxis)
|
||||
);
|
||||
} else if (getPositionType(child) == CSS_POSITION_ABSOLUTE) {
|
||||
} else if (child->style.position_type == CSS_POSITION_ABSOLUTE) {
|
||||
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
|
||||
// left and right or top and bottom).
|
||||
for (ii = 0; ii < 2; ii++) {
|
||||
@@ -639,9 +643,8 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
}
|
||||
|
||||
float definedMainDim = CSS_UNDEFINED;
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
definedMainDim = node->layout.dimensions[dim[mainAxis]] -
|
||||
getPaddingAndBorderAxis(node, mainAxis);
|
||||
if (isMainDimDefined) {
|
||||
definedMainDim = node->layout.dimensions[dim[mainAxis]] - paddingAndBorderAxisMain;
|
||||
}
|
||||
|
||||
// We want to execute the next two loops one per line with flex-wrap
|
||||
@@ -653,7 +656,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
float linesCrossDim = 0;
|
||||
float linesMainDim = 0;
|
||||
int linesCount = 0;
|
||||
while (endLine < node->children_count) {
|
||||
while (endLine < childCount) {
|
||||
// <Loop A> Layout non flexible children and count children by type
|
||||
|
||||
// mainContentDim is accumulation of the dimensions and margin of all the
|
||||
@@ -669,15 +672,15 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
int nonFlexibleChildrenCount = 0;
|
||||
|
||||
float maxWidth;
|
||||
for (i = startLine; i < node->children_count; ++i) {
|
||||
for (i = startLine; i < childCount; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
float nextContentDim = 0;
|
||||
|
||||
// It only makes sense to consider a child flexible if we have a computed
|
||||
// dimension for the node->
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
|
||||
if (isMainDimDefined && isFlex(child)) {
|
||||
flexibleChildrenCount++;
|
||||
totalFlexible += getFlex(child);
|
||||
totalFlexible += child->style.flex;
|
||||
|
||||
// Even if we don't know its exact size yet, we already know the padding,
|
||||
// border and margin. We'll use this partial information, which represents
|
||||
@@ -688,14 +691,14 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
} else {
|
||||
maxWidth = CSS_UNDEFINED;
|
||||
if (!isRowDirection(mainAxis)) {
|
||||
maxWidth = parentMaxWidth -
|
||||
getMarginAxis(node, resolvedRowAxis) -
|
||||
getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
|
||||
if (!isMainRowDirection) {
|
||||
if (isDimDefined(node, resolvedRowAxis)) {
|
||||
maxWidth = node->layout.dimensions[dim[resolvedRowAxis]] -
|
||||
getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
paddingAndBorderAxisResolvedRow;
|
||||
} else {
|
||||
maxWidth = parentMaxWidth -
|
||||
getMarginAxis(node, resolvedRowAxis) -
|
||||
paddingAndBorderAxisResolvedRow;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -706,7 +709,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
// Absolute positioned elements do not take part of the layout, so we
|
||||
// don't use them to compute mainContentDim
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
||||
nonFlexibleChildrenCount++;
|
||||
// At this point we know the final size and margin of the element.
|
||||
nextContentDim = getDimWithMargin(child, mainAxis);
|
||||
@@ -714,8 +717,8 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
}
|
||||
|
||||
// The element we are about to add would make us go to the next line
|
||||
if (isFlexWrap(node) &&
|
||||
!isUndefined(node->layout.dimensions[dim[mainAxis]]) &&
|
||||
if (isNodeFlexWrap &&
|
||||
isMainDimDefined &&
|
||||
mainContentDim + nextContentDim > definedMainDim &&
|
||||
// If there's only one element, then it's bigger than the content
|
||||
// and needs its own line
|
||||
@@ -739,7 +742,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
// The remaining available space that needs to be allocated
|
||||
float remainingMainDim = 0;
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
if (isMainDimDefined) {
|
||||
remainingMainDim = definedMainDim - mainContentDim;
|
||||
} else {
|
||||
remainingMainDim = fmaxf(mainContentDim, 0) - mainContentDim;
|
||||
@@ -758,13 +761,13 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
for (i = startLine; i < endLine; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
if (isFlex(child)) {
|
||||
baseMainDim = flexibleMainDim * getFlex(child) +
|
||||
baseMainDim = flexibleMainDim * child->style.flex +
|
||||
getPaddingAndBorderAxis(child, mainAxis);
|
||||
boundMainDim = boundAxis(child, mainAxis, baseMainDim);
|
||||
|
||||
if (baseMainDim != boundMainDim) {
|
||||
remainingMainDim -= boundMainDim;
|
||||
totalFlexible -= getFlex(child);
|
||||
totalFlexible -= child->style.flex;
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -784,17 +787,17 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// At this point we know the final size of the element in the main
|
||||
// dimension
|
||||
child->layout.dimensions[dim[mainAxis]] = boundAxis(child, mainAxis,
|
||||
flexibleMainDim * getFlex(child) + getPaddingAndBorderAxis(child, mainAxis)
|
||||
flexibleMainDim * child->style.flex + getPaddingAndBorderAxis(child, mainAxis)
|
||||
);
|
||||
|
||||
maxWidth = CSS_UNDEFINED;
|
||||
if (isDimDefined(node, resolvedRowAxis)) {
|
||||
maxWidth = node->layout.dimensions[dim[resolvedRowAxis]] -
|
||||
getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
} else if (!isRowDirection(mainAxis)) {
|
||||
paddingAndBorderAxisResolvedRow;
|
||||
} else if (!isMainRowDirection) {
|
||||
maxWidth = parentMaxWidth -
|
||||
getMarginAxis(node, resolvedRowAxis) -
|
||||
getPaddingAndBorderAxis(node, resolvedRowAxis);
|
||||
paddingAndBorderAxisResolvedRow;
|
||||
}
|
||||
|
||||
// And we recursively call the layout algorithm for this child
|
||||
@@ -805,7 +808,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// We use justifyContent to figure out how to allocate the remaining
|
||||
// space available
|
||||
} else {
|
||||
css_justify_t justifyContent = getJustifyContent(node);
|
||||
css_justify_t justifyContent = node->style.justify_content;
|
||||
if (justifyContent == CSS_JUSTIFY_CENTER) {
|
||||
leadingMainDim = remainingMainDim / 2;
|
||||
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
|
||||
@@ -833,14 +836,13 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// variables that are also useful to compute the total dimensions of the
|
||||
// container!
|
||||
float crossDim = 0;
|
||||
float mainDim = leadingMainDim +
|
||||
getLeadingPaddingAndBorder(node, mainAxis);
|
||||
float mainDim = leadingMainDim + leadingPaddingAndBorderMain;
|
||||
|
||||
for (i = startLine; i < endLine; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
child->line_index = linesCount;
|
||||
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
|
||||
if (child->style.position_type == CSS_POSITION_ABSOLUTE &&
|
||||
isPosDefined(child, leading[mainAxis])) {
|
||||
// In case the child is position absolute and has left/top being
|
||||
// defined, we override the position to whatever the user said
|
||||
@@ -854,7 +856,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
child->layout.position[pos[mainAxis]] += mainDim;
|
||||
|
||||
// Define the trailing position accordingly.
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
if (isMainDimDefined) {
|
||||
setTrailingPosition(node, child, mainAxis);
|
||||
}
|
||||
}
|
||||
@@ -862,7 +864,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// Now that we placed the element, we need to update the variables
|
||||
// We only need to do that for relative elements. Absolute elements
|
||||
// do not take part in that phase.
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
||||
// The main dimension is the sum of all the elements dimension plus
|
||||
// the spacing.
|
||||
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
|
||||
@@ -873,13 +875,13 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
}
|
||||
|
||||
float containerCrossAxis = node->layout.dimensions[dim[crossAxis]];
|
||||
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
|
||||
if (!isCrossDimDefined) {
|
||||
containerCrossAxis = fmaxf(
|
||||
// For the cross dim, we add both sides at the end because the value
|
||||
// is aggregate via a max function. Intermediate negative values
|
||||
// can mess this computation otherwise
|
||||
boundAxis(node, crossAxis, crossDim + getPaddingAndBorderAxis(node, crossAxis)),
|
||||
getPaddingAndBorderAxis(node, crossAxis)
|
||||
boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross),
|
||||
paddingAndBorderAxisCross
|
||||
);
|
||||
}
|
||||
|
||||
@@ -887,7 +889,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
for (i = startLine; i < endLine; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
|
||||
if (child->style.position_type == CSS_POSITION_ABSOLUTE &&
|
||||
isPosDefined(child, leading[crossAxis])) {
|
||||
// In case the child is absolutely positionned and has a
|
||||
// top/left/bottom/right being set, we override all the previously
|
||||
@@ -897,11 +899,11 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
getLeadingMargin(child, crossAxis);
|
||||
|
||||
} else {
|
||||
float leadingCrossDim = getLeadingPaddingAndBorder(node, crossAxis);
|
||||
float leadingCrossDim = leadingPaddingAndBorderCross;
|
||||
|
||||
// For a relative children, we're either using alignItems (parent) or
|
||||
// alignSelf (child) in order to determine the position in the cross axis
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
if (child->style.position_type == CSS_POSITION_RELATIVE) {
|
||||
css_align_t alignItem = getAlignItem(node, child);
|
||||
if (alignItem == CSS_ALIGN_STRETCH) {
|
||||
// You can only stretch if the dimension has not already been set
|
||||
@@ -909,8 +911,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
if (!isDimDefined(child, crossAxis)) {
|
||||
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
boundAxis(child, crossAxis, containerCrossAxis -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getMarginAxis(child, crossAxis)),
|
||||
paddingAndBorderAxisCross - getMarginAxis(child, crossAxis)),
|
||||
// You never want to go smaller than padding
|
||||
getPaddingAndBorderAxis(child, crossAxis)
|
||||
);
|
||||
@@ -919,8 +920,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// The remaining space between the parent dimensions+padding and child
|
||||
// dimensions+margin.
|
||||
float remainingCrossDim = containerCrossAxis -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getDimWithMargin(child, crossAxis);
|
||||
paddingAndBorderAxisCross - getDimWithMargin(child, crossAxis);
|
||||
|
||||
if (alignItem == CSS_ALIGN_CENTER) {
|
||||
leadingCrossDim += remainingCrossDim / 2;
|
||||
@@ -934,7 +934,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
child->layout.position[pos[crossAxis]] += linesCrossDim + leadingCrossDim;
|
||||
|
||||
// Define the trailing position accordingly.
|
||||
if (!isUndefined(node->layout.dimensions[dim[crossAxis]])) {
|
||||
if (isCrossDimDefined) {
|
||||
setTrailingPosition(node, child, crossAxis);
|
||||
}
|
||||
}
|
||||
@@ -959,16 +959,15 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
// http://www.w3.org/TR/2012/CR-css3-flexbox-20120918/#layout-algorithm
|
||||
// section 9.4
|
||||
//
|
||||
if (linesCount > 1 &&
|
||||
!isUndefined(node->layout.dimensions[dim[crossAxis]])) {
|
||||
if (linesCount > 1 && isCrossDimDefined) {
|
||||
float nodeCrossAxisInnerSize = node->layout.dimensions[dim[crossAxis]] -
|
||||
getPaddingAndBorderAxis(node, crossAxis);
|
||||
paddingAndBorderAxisCross;
|
||||
float remainingAlignContentDim = nodeCrossAxisInnerSize - linesCrossDim;
|
||||
|
||||
float crossDimLead = 0;
|
||||
float currentLead = getLeadingPaddingAndBorder(node, crossAxis);
|
||||
float currentLead = leadingPaddingAndBorderCross;
|
||||
|
||||
css_align_t alignContent = getAlignContent(node);
|
||||
css_align_t alignContent = node->style.align_content;
|
||||
if (alignContent == CSS_ALIGN_FLEX_END) {
|
||||
currentLead += remainingAlignContentDim;
|
||||
} else if (alignContent == CSS_ALIGN_CENTER) {
|
||||
@@ -985,9 +984,9 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
// compute the line's height and find the endIndex
|
||||
float lineHeight = 0;
|
||||
for (ii = startIndex; ii < node->children_count; ++ii) {
|
||||
for (ii = startIndex; ii < childCount; ++ii) {
|
||||
child = node->get_child(node->context, ii);
|
||||
if (getPositionType(child) != CSS_POSITION_RELATIVE) {
|
||||
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
||||
continue;
|
||||
}
|
||||
if (child->line_index != i) {
|
||||
@@ -1005,7 +1004,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
for (ii = startIndex; ii < endIndex; ++ii) {
|
||||
child = node->get_child(node->context, ii);
|
||||
if (getPositionType(child) != CSS_POSITION_RELATIVE) {
|
||||
if (child->style.position_type != CSS_POSITION_RELATIVE) {
|
||||
continue;
|
||||
}
|
||||
|
||||
@@ -1033,25 +1032,25 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
// If the user didn't specify a width or height, and it has not been set
|
||||
// by the container, then we set it via the children.
|
||||
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
if (!isMainDimDefined) {
|
||||
node->layout.dimensions[dim[mainAxis]] = fmaxf(
|
||||
// We're missing the last padding at this point to get the final
|
||||
// dimension
|
||||
boundAxis(node, mainAxis, linesMainDim + getTrailingPaddingAndBorder(node, mainAxis)),
|
||||
// We can never assign a width smaller than the padding and borders
|
||||
getPaddingAndBorderAxis(node, mainAxis)
|
||||
paddingAndBorderAxisMain
|
||||
);
|
||||
|
||||
needsMainTrailingPos = true;
|
||||
}
|
||||
|
||||
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
|
||||
if (!isCrossDimDefined) {
|
||||
node->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
// For the cross dim, we add both sides at the end because the value
|
||||
// is aggregate via a max function. Intermediate negative values
|
||||
// can mess this computation otherwise
|
||||
boundAxis(node, crossAxis, linesCrossDim + getPaddingAndBorderAxis(node, crossAxis)),
|
||||
getPaddingAndBorderAxis(node, crossAxis)
|
||||
boundAxis(node, crossAxis, linesCrossDim + paddingAndBorderAxisCross),
|
||||
paddingAndBorderAxisCross
|
||||
);
|
||||
|
||||
needsCrossTrailingPos = true;
|
||||
@@ -1059,7 +1058,7 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
|
||||
// <Loop F> Set trailing position if necessary
|
||||
if (needsMainTrailingPos || needsCrossTrailingPos) {
|
||||
for (i = 0; i < node->children_count; ++i) {
|
||||
for (i = 0; i < childCount; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
|
||||
if (needsMainTrailingPos) {
|
||||
@@ -1073,9 +1072,9 @@ static void layoutNodeImpl(css_node_t *node, float parentMaxWidth, css_direction
|
||||
}
|
||||
|
||||
// <Loop G> Calculate dimensions for absolutely positioned elements
|
||||
for (i = 0; i < node->children_count; ++i) {
|
||||
for (i = 0; i < childCount; ++i) {
|
||||
child = node->get_child(node->context, i);
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE) {
|
||||
if (child->style.position_type == CSS_POSITION_ABSOLUTE) {
|
||||
// Pre-fill dimensions when using absolute position and both offsets for the axis are defined (either both
|
||||
// left and right or top and bottom).
|
||||
for (ii = 0; ii < 2; ii++) {
|
||||
|
Reference in New Issue
Block a user