backport changes to C
This commit is contained in:
268
src/Layout.c
268
src/Layout.c
@@ -260,6 +260,10 @@ css_flex_t getFlex(css_node_t *node) {
|
||||
return node->style.flex;
|
||||
}
|
||||
|
||||
bool isFlex(css_node_t *node) {
|
||||
return getPositionType(node) == CSS_POSITION_RELATIVE && getFlex(node);
|
||||
}
|
||||
|
||||
float getDimWithMargin(css_node_t *node, css_flex_direction_t axis) {
|
||||
return node->layout.dimensions[dim[axis]] +
|
||||
getMargin(node, leading[axis]) +
|
||||
@@ -282,6 +286,24 @@ float getPosition(css_node_t *node, css_position_t pos) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
// When the user specifically sets a value for width or height
|
||||
void setDimensionFromStyle(css_node_t *node, css_flex_direction_t axis) {
|
||||
// The parent already computed us a width or height. We just skip it
|
||||
if (!isUndefined(node->layout.dimensions[dim[axis]])) {
|
||||
return;
|
||||
}
|
||||
// We only run if there's a width or height defined
|
||||
if (!isDimDefined(node, axis)) {
|
||||
return;
|
||||
}
|
||||
|
||||
// The dimensions can never be smaller than the padding and border
|
||||
node->layout.dimensions[dim[axis]] = fmaxf(
|
||||
node->style.dimensions[dim[axis]],
|
||||
getPaddingAndBorderAxis(node, axis)
|
||||
);
|
||||
}
|
||||
|
||||
// If both left and right are defined, then use left. Otherwise return
|
||||
// +left or -right depending on which is defined.
|
||||
float getRelativePosition(css_node_t *node, css_flex_direction_t axis) {
|
||||
@@ -298,61 +320,104 @@ void layoutNode(css_node_t *node) {
|
||||
CSS_FLEX_DIRECTION_COLUMN :
|
||||
CSS_FLEX_DIRECTION_ROW;
|
||||
|
||||
bool mainDimInStyle = isDimDefined(node, mainAxis);
|
||||
if (isUndefined(node->layout.dimensions[dim[mainAxis]]) && mainDimInStyle) {
|
||||
node->layout.dimensions[dim[mainAxis]] = fmaxf(
|
||||
node->style.dimensions[dim[mainAxis]],
|
||||
getPaddingAndBorderAxis(node, mainAxis)
|
||||
);
|
||||
}
|
||||
// Handle width and height style attributes
|
||||
setDimensionFromStyle(node, mainAxis);
|
||||
setDimensionFromStyle(node, crossAxis);
|
||||
|
||||
bool crossDimInStyle = isDimDefined(node, crossAxis);
|
||||
if (isUndefined(node->layout.dimensions[dim[crossAxis]]) && crossDimInStyle) {
|
||||
node->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
node->style.dimensions[dim[crossAxis]],
|
||||
getPaddingAndBorderAxis(node, crossAxis)
|
||||
);
|
||||
}
|
||||
// The position is set by the parent, but we need to complete it with a
|
||||
// delta composed of the margin and left/top/right/bottom
|
||||
node->layout.position[leading[mainAxis]] += getMargin(node, leading[mainAxis]) +
|
||||
getRelativePosition(node, mainAxis);
|
||||
node->layout.position[leading[crossAxis]] += getMargin(node, leading[crossAxis]) +
|
||||
getRelativePosition(node, crossAxis);
|
||||
|
||||
|
||||
// <Loop A> Layout non flexible children and count children by type
|
||||
|
||||
// mainContentDim is accumulation of the dimensions and margin of all the
|
||||
// non flexible children. This will be used in order to either set the
|
||||
// dimensions of the node if none already exist, or to compute the
|
||||
// remaining space left for the flexible children.
|
||||
float mainContentDim = 0;
|
||||
|
||||
// There are three kind of children, non flexible, flexible and absolute.
|
||||
// We need to know how many there are in order to distribute the space.
|
||||
int flexibleChildrenCount = 0;
|
||||
int absoluteChildrenCount = 0;
|
||||
int nonFlexibleChildrenCount = 0;
|
||||
for (int i = 0; i < node->children_count; ++i) {
|
||||
css_node_t* child = &node->children[i];
|
||||
if (isUndefined(node->layout.dimensions[dim[mainAxis]]) ||
|
||||
getPositionType(child) == CSS_POSITION_ABSOLUTE ||
|
||||
!getFlex(child)) {
|
||||
layoutNode(child);
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
mainContentDim += getDimWithMargin(child, mainAxis);
|
||||
} else {
|
||||
absoluteChildrenCount++;
|
||||
}
|
||||
} else {
|
||||
|
||||
// It only makes sense to consider a child flexible if we have a computed
|
||||
// dimension for the node->
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]]) && isFlex(child)) {
|
||||
flexibleChildrenCount++;
|
||||
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) + getMarginAxis(child, mainAxis);
|
||||
|
||||
// Even if we don't know its exact size yet, we already know the padding,
|
||||
// border and margin. We'll use this partial information to compute the
|
||||
// remaining space.
|
||||
mainContentDim += getPaddingAndBorderAxis(child, mainAxis) +
|
||||
getMarginAxis(child, mainAxis);
|
||||
|
||||
} else {
|
||||
// This is the main recursive call. We layout non flexible children.
|
||||
layoutNode(child);
|
||||
|
||||
// Absolute positioned elements do not take part of the layout, so we
|
||||
// don't use them to compute mainContentDim
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
nonFlexibleChildrenCount++;
|
||||
// At this point we know the final size and margin of the element.
|
||||
mainContentDim += getDimWithMargin(child, mainAxis);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// <Loop B> Layout flexible children and allocate empty space
|
||||
|
||||
// In order to position the elements in the main axis, we have two
|
||||
// controls. The space between the beginning and the first element
|
||||
// and the space between each two elements.
|
||||
float leadingMainDim = 0;
|
||||
float betweenMainDim = 0;
|
||||
|
||||
// If the dimensions of the current node is defined by its children, they
|
||||
// are all going to be packed together and we don't need to compute
|
||||
// anything.
|
||||
if (!isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
|
||||
// The remaining available space that's needs to be allocated
|
||||
float remainingMainDim = node->layout.dimensions[dim[mainAxis]] -
|
||||
getPaddingAndBorderAxis(node, mainAxis) -
|
||||
mainContentDim;
|
||||
|
||||
// If there are flexible children in the mix, they are going to fill the
|
||||
// remaining space
|
||||
if (flexibleChildrenCount) {
|
||||
float flexibleMainDim = remainingMainDim / flexibleChildrenCount;
|
||||
|
||||
// The non flexible children can overflow the container, in this case
|
||||
// we should just assume that there is no space available.
|
||||
if (flexibleMainDim < 0) {
|
||||
flexibleMainDim = 0;
|
||||
}
|
||||
// We iterate over the full array and only apply the action on flexible
|
||||
// children. This is faster than actually allocating a new array that
|
||||
// contains only flexible children.
|
||||
for (int i = 0; i < node->children_count; ++i) {
|
||||
css_node_t* child = &node->children[i];
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE && getFlex(child)) {
|
||||
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim + getPaddingAndBorderAxis(child, mainAxis);
|
||||
if (isFlex(child)) {
|
||||
// At this point we know the final size of the element in the main
|
||||
// dimension
|
||||
child->layout.dimensions[dim[mainAxis]] = flexibleMainDim +
|
||||
getPaddingAndBorderAxis(child, mainAxis);
|
||||
|
||||
// And we recursively call the layout algorithm for this child
|
||||
layoutNode(child);
|
||||
}
|
||||
}
|
||||
|
||||
// We use justifyContent to figure out how to allocate the remaining
|
||||
// space available
|
||||
} else {
|
||||
css_justify_t justifyContent = getJustifyContent(node);
|
||||
if (justifyContent == CSS_JUSTIFY_FLEX_START) {
|
||||
@@ -362,87 +427,132 @@ void layoutNode(css_node_t *node) {
|
||||
} else if (justifyContent == CSS_JUSTIFY_FLEX_END) {
|
||||
leadingMainDim = remainingMainDim;
|
||||
} else if (justifyContent == CSS_JUSTIFY_SPACE_BETWEEN) {
|
||||
betweenMainDim = remainingMainDim / (node->children_count - absoluteChildrenCount - 1);
|
||||
betweenMainDim = remainingMainDim /
|
||||
(flexibleChildrenCount + nonFlexibleChildrenCount - 1);
|
||||
} else if (justifyContent == CSS_JUSTIFY_SPACE_AROUND) {
|
||||
betweenMainDim = remainingMainDim / (node->children_count - absoluteChildrenCount);
|
||||
// Space on the edges is half of the space between elements
|
||||
betweenMainDim = remainingMainDim /
|
||||
(flexibleChildrenCount + nonFlexibleChildrenCount);
|
||||
leadingMainDim = betweenMainDim / 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// <Loop C> Position elements in the main axis and compute dimensions
|
||||
|
||||
// At this point, all the children have their dimensions set. We need to
|
||||
// find their position. In order to do that, we accumulate data in
|
||||
// variables that are also useful to compute the total dimensions of the
|
||||
// container!
|
||||
float crossDim = 0;
|
||||
float mainPos = getPaddingAndBorder(node, leading[mainAxis]) + leadingMainDim;
|
||||
float mainDim = leadingMainDim +
|
||||
getPaddingAndBorder(node, leading[mainAxis]);
|
||||
for (int i = 0; i < node->children_count; ++i) {
|
||||
css_node_t* child = &node->children[i];
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[mainAxis])) {
|
||||
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
|
||||
isPosDefined(child, leading[mainAxis])) {
|
||||
// In case the child is position absolute and has left/top being
|
||||
// defined, we override the position to whatever the user said
|
||||
// (and margin/border).
|
||||
child->layout.position[pos[mainAxis]] = getPosition(child, leading[mainAxis]) +
|
||||
getBorder(node, leading[mainAxis]) +
|
||||
getMargin(child, leading[mainAxis]);
|
||||
} else {
|
||||
child->layout.position[pos[mainAxis]] += mainPos;
|
||||
// If the child is position absolute (without top/left) or relative,
|
||||
// we put it at the current accumulated offset.
|
||||
child->layout.position[pos[mainAxis]] += mainDim;
|
||||
}
|
||||
|
||||
// Now that we placed the element, we need to update the variables
|
||||
// We only need to do that for relative elements. Absolute elements
|
||||
// do not take part in that phase.
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
mainPos += getDimWithMargin(child, mainAxis) + betweenMainDim;
|
||||
|
||||
if (!isUndefined(child->layout.dimensions[dim[crossAxis]])) {
|
||||
float childCrossDim = getDimWithMargin(child, crossAxis);
|
||||
if (childCrossDim > crossDim) {
|
||||
crossDim = childCrossDim;
|
||||
}
|
||||
}
|
||||
// The main dimension is the sum of all the elements dimension plus
|
||||
// the spacing.
|
||||
mainDim += betweenMainDim + getDimWithMargin(child, mainAxis);
|
||||
// The cross dimension is the max of the elements dimension since there
|
||||
// can only be one element in that cross dimension.
|
||||
crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis));
|
||||
}
|
||||
}
|
||||
|
||||
mainPos += getPaddingAndBorder(node, trailing[mainAxis]);
|
||||
crossDim += getPaddingAndBorderAxis(node, crossAxis);
|
||||
// If the user didn't specify a width or height, and it has not been set
|
||||
// by the container, then we set it via the children.
|
||||
if (isUndefined(node->layout.dimensions[dim[mainAxis]])) {
|
||||
node->layout.dimensions[dim[mainAxis]] = fmaxf(
|
||||
// We're missing the last padding at this point to get the final
|
||||
// dimension
|
||||
mainDim + getPaddingAndBorder(node, trailing[mainAxis]),
|
||||
// We can never assign a width smaller than the padding and borders
|
||||
getPaddingAndBorderAxis(node, mainAxis)
|
||||
);
|
||||
}
|
||||
|
||||
if (isUndefined(node->layout.dimensions[dim[mainAxis]]) && !mainDimInStyle) {
|
||||
node->layout.dimensions[dim[mainAxis]] = fmaxf(mainPos, getPaddingAndBorderAxis(node, mainAxis));
|
||||
}
|
||||
if (isUndefined(node->layout.dimensions[dim[crossAxis]])) {
|
||||
node->layout.dimensions[dim[crossAxis]] = fmaxf(crossDim, getPaddingAndBorderAxis(node, crossAxis));
|
||||
node->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
// For the cross dim, we add both sides at the end because the value
|
||||
// is aggregate via a max function. Intermediate negative values
|
||||
// can mess this computation otherwise
|
||||
crossDim + getPaddingAndBorderAxis(node, crossAxis),
|
||||
getPaddingAndBorderAxis(node, crossAxis)
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// <Loop D> Position elements in the cross axis
|
||||
|
||||
for (int i = 0; i < node->children_count; ++i) {
|
||||
css_node_t* child = &node->children[i];
|
||||
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
css_align_t alignItem = getAlignItem(node, child);
|
||||
float remainingCrossDim = node->layout.dimensions[dim[crossAxis]] -
|
||||
getDimWithMargin(child, crossAxis) -
|
||||
getPaddingAndBorderAxis(node, crossAxis);
|
||||
if (getPositionType(child) == CSS_POSITION_ABSOLUTE &&
|
||||
isPosDefined(child, leading[crossAxis])) {
|
||||
// In case the child is absolutely positionned and has a
|
||||
// top/left/bottom/right being set, we override all the previously
|
||||
// computed positions to set it correctly.
|
||||
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
|
||||
getBorder(node, leading[crossAxis]) +
|
||||
getMargin(child, leading[crossAxis]);
|
||||
|
||||
} else {
|
||||
float leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]);
|
||||
if (alignItem == CSS_ALIGN_FLEX_START) {
|
||||
// Do nothing
|
||||
} else if (alignItem == CSS_ALIGN_CENTER) {
|
||||
leadingCrossDim += remainingCrossDim / 2;
|
||||
} else if (alignItem == CSS_ALIGN_FLEX_END) {
|
||||
leadingCrossDim += remainingCrossDim;
|
||||
} else if (alignItem == CSS_ALIGN_STRETCH) {
|
||||
if (!isDimDefined(child, crossAxis)) {
|
||||
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
node->layout.dimensions[dim[crossAxis]] -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getMarginAxis(child, crossAxis),
|
||||
getPaddingAndBorderAxis(child, crossAxis)
|
||||
);
|
||||
|
||||
// For a relative children, we're either using alignItems (parent) or
|
||||
// alignSelf (child) in order to determine the position in the cross axis
|
||||
if (getPositionType(child) == CSS_POSITION_RELATIVE) {
|
||||
css_align_t alignItem = getAlignItem(node, child);
|
||||
if (alignItem == CSS_ALIGN_FLEX_START) {
|
||||
// Do nothing
|
||||
} else if (alignItem == CSS_ALIGN_STRETCH) {
|
||||
// You can only stretch if the dimension has not already been set
|
||||
// previously.
|
||||
if (!isDimDefined(child, crossAxis)) {
|
||||
child->layout.dimensions[dim[crossAxis]] = fmaxf(
|
||||
node->layout.dimensions[dim[crossAxis]] -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getMarginAxis(child, crossAxis),
|
||||
// You never want to go smaller than padding
|
||||
getPaddingAndBorderAxis(child, crossAxis)
|
||||
);
|
||||
}
|
||||
} else {
|
||||
// The remaining space between the parent dimensions+padding and child
|
||||
// dimensions+margin.
|
||||
float remainingCrossDim = node->layout.dimensions[dim[crossAxis]] -
|
||||
getPaddingAndBorderAxis(node, crossAxis) -
|
||||
getDimWithMargin(child, crossAxis);
|
||||
|
||||
if (alignItem == CSS_ALIGN_CENTER) {
|
||||
leadingCrossDim += remainingCrossDim / 2;
|
||||
} else { // CSS_ALIGN_FLEX_END
|
||||
leadingCrossDim += remainingCrossDim;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// And we apply the position
|
||||
child->layout.position[pos[crossAxis]] += leadingCrossDim;
|
||||
} else {
|
||||
if (isPosDefined(child, leading[crossAxis])) {
|
||||
child->layout.position[pos[crossAxis]] = getPosition(child, leading[crossAxis]) +
|
||||
getBorder(node, leading[crossAxis]) +
|
||||
getMargin(child, leading[crossAxis]);
|
||||
} else {
|
||||
child->layout.position[pos[crossAxis]] += getPaddingAndBorder(node, leading[crossAxis]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
node->layout.position[leading[mainAxis]] += getMargin(node, leading[mainAxis]) +
|
||||
getRelativePosition(node, mainAxis);
|
||||
node->layout.position[leading[crossAxis]] += getMargin(node, leading[crossAxis]) +
|
||||
getRelativePosition(node, crossAxis);
|
||||
}
|
||||
|
@@ -146,7 +146,6 @@ var computeLayout = (function() {
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
// When the user specifically sets a value for width or height
|
||||
function setDimensionFromStyle(node, axis) {
|
||||
// The parent already computed us a width or height. We just skip it
|
||||
@@ -165,21 +164,6 @@ var computeLayout = (function() {
|
||||
);
|
||||
}
|
||||
|
||||
// The user didn't specify width or height, we use the computed values from
|
||||
// the children
|
||||
function setDimensionFromLayout(node, axis, dimension) {
|
||||
if (!isUndefined(node.layout[dim[axis]])) {
|
||||
return;
|
||||
}
|
||||
|
||||
node.layout[dim[axis]] = fmaxf(
|
||||
// In our previous computation, we're missing the trailing part
|
||||
dimension + getPaddingAndBorder(node, trailing[axis]),
|
||||
// We can never be smaller than the specified padding + border
|
||||
getPaddingAndBorderAxis(node, axis)
|
||||
);
|
||||
}
|
||||
|
||||
// If both left and right are defined, then use left. Otherwise return
|
||||
// +left or -right depending on which is defined.
|
||||
function getRelativePosition(node, axis) {
|
||||
|
Reference in New Issue
Block a user