Fixed rounding issues with YGRoundValueToPixelGrid and negative floats #702
@@ -18,6 +18,14 @@ TEST(YogaTest, rounding_value) {
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(5.999999, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(5.999999, 2.0, false, true));
|
||||
|
||||
// Test with negative numbers
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.000001, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.000001, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.000001, 2.0, false, true));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-5.999999, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-5.999999, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-5.999999, 2.0, false, true));
|
||||
|
||||
// Test that numbers with fraction are rounded correctly accounting for ceil/floor flags
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(6.01, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(6.5, YGRoundValueToPixelGrid(6.01, 2.0, true, false));
|
||||
@@ -25,4 +33,45 @@ TEST(YogaTest, rounding_value) {
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(5.99, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(5.99, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(5.5, YGRoundValueToPixelGrid(5.99, 2.0, false, true));
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(6.49, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(7.0, YGRoundValueToPixelGrid(6.50, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(7.0, YGRoundValueToPixelGrid(6.51, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(7.0, YGRoundValueToPixelGrid(6.50, 1.0, true, false));
|
||||
ASSERT_FLOAT_EQ(6.0, YGRoundValueToPixelGrid(6.50, 1.0, false, true));
|
||||
|
||||
// Test with negative numbers
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.01, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.01, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(-6.5, YGRoundValueToPixelGrid(-6.01, 2.0, false, true));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-5.99, 2.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-5.5, YGRoundValueToPixelGrid(-5.99, 2.0, true, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-5.99, 2.0, false, true));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.49, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.50, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-7.0, YGRoundValueToPixelGrid(-6.51, 1.0, false, false));
|
||||
ASSERT_FLOAT_EQ(-6.0, YGRoundValueToPixelGrid(-6.50, 1.0, true, false));
|
||||
ASSERT_FLOAT_EQ(-7.0, YGRoundValueToPixelGrid(-6.50, 1.0, false, true));
|
||||
|
||||
// Do a simple translation test to ensure that a distance between 2 values
|
||||
// stays consistent during an animation, even after rounding them.
|
||||
const int LAPS = 3;
|
||||
const int LAP_CLOSEST = 0;
|
||||
const int LAP_CEIL = 1;
|
||||
const int LAP_FLOOR = 2;
|
||||
for (int currentLap = LAP_CLOSEST; currentLap < LAPS; ++currentLap)
|
||||
{
|
||||
float left = -2.0f;
|
||||
float right = 2.0f;
|
||||
const float distance = right-left;
|
||||
float totalDistance = 1.1f;
|
||||
const float step = 0.01f;
|
||||
while (totalDistance >= 0.0f) {
|
||||
left += step;
|
||||
right += step;
|
||||
const float snappedLeft = YGRoundValueToPixelGrid(left, 1.0, currentLap==LAP_CEIL, currentLap==LAP_FLOOR);
|
||||
const float snappedRight = YGRoundValueToPixelGrid(right, 1.0, currentLap==LAP_CEIL, currentLap==LAP_FLOOR);
|
||||
ASSERT_FLOAT_EQ(distance, (snappedRight-snappedLeft));
|
||||
totalDistance -= step;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@@ -3180,24 +3180,41 @@ float YGRoundValueToPixelGrid(const float value,
|
||||
const bool forceCeil,
|
||||
const bool forceFloor) {
|
||||
float scaledValue = value * pointScaleFactor;
|
||||
float fractial = fmodf(scaledValue, 1.0);
|
||||
if (YGFloatsEqual(fractial, 0)) {
|
||||
// First we check if the value is already rounded
|
||||
scaledValue = scaledValue - fractial;
|
||||
} else if (YGFloatsEqual(fractial, 1.0)) {
|
||||
scaledValue = scaledValue - fractial + 1.0;
|
||||
const float fractial = fmodf(scaledValue, 1.0f);
|
||||
const float absoluteFractial = fabs(fractial);
|
||||
|
||||
// 1. Remove any remainder from the scaledValue
|
||||
scaledValue = scaledValue - fractial;
|
||||
|
||||
// 2. Figure out rounding
|
||||
// Note: It is important that the following rounding algorithm
|
||||
// ensures that both positive and negative values are treated exactly the same.
|
||||
if (YGFloatsEqual(absoluteFractial, 0.0f)) {
|
||||
// Already whole (or close enough), skip rounding
|
||||
} else if (YGFloatsEqual(absoluteFractial, 1.0f)) {
|
||||
// Already whole (or close enough), skip rounding
|
||||
scaledValue += (fractial < 0.0f) ? -1.0f : 1.0f;
|
||||
} else if (forceCeil) {
|
||||
// Next we check if we need to use forced rounding
|
||||
scaledValue = scaledValue - fractial + 1.0f;
|
||||
// Force round to upper whole value
|
||||
if (fractial > 0.0f) {
|
||||
scaledValue += 1.0f;
|
||||
}
|
||||
} else if (forceFloor) {
|
||||
scaledValue = scaledValue - fractial;
|
||||
// Force round to lower whole value
|
||||
if (fractial < 0.0f) {
|
||||
scaledValue -= 1.0f;
|
||||
}
|
||||
} else {
|
||||
// Finally we just round the value
|
||||
scaledValue = scaledValue - fractial +
|
||||
(!YGFloatIsUndefined(fractial) &&
|
||||
(fractial > 0.5f || YGFloatsEqual(fractial, 0.5f))
|
||||
? 1.0f
|
||||
: 0.0f);
|
||||
// Round to closest whole value
|
||||
if (fractial > 0.0f) {
|
||||
if (absoluteFractial > 0.5f || YGFloatsEqual(absoluteFractial, 0.5f)) {
|
||||
scaledValue += 1.0f;
|
||||
}
|
||||
} else {
|
||||
if (absoluteFractial > 0.5f && !YGFloatsEqual(absoluteFractial, 0.5f)) {
|
||||
scaledValue -= 1.0f;
|
||||
}
|
||||
}
|
||||
}
|
||||
return (YGFloatIsUndefined(scaledValue) ||
|
||||
YGFloatIsUndefined(pointScaleFactor))
|
||||
|
Reference in New Issue
Block a user