var computeLayout = (function() { function capitalizeFirst(str) { return str.charAt(0).toUpperCase() + str.slice(1); } function getSpacing(node, type, suffix, location) { var key = type + capitalizeFirst(location) + suffix; if (key in node.style) { return node.style[key]; } key = type + suffix; if (key in node.style) { return node.style[key]; } return 0; } function getPositiveSpacing(node, type, suffix, location) { var key = type + capitalizeFirst(location) + suffix; if (key in node.style && node.style[key] >= 0) { return node.style[key]; } key = type + suffix; if (key in node.style && node.style[key] >= 0) { return node.style[key]; } return 0; } function isUndefined(value) { return value === undefined; } function getMargin(node, location) { return getSpacing(node, 'margin', '', location); } function getPadding(node, location) { return getPositiveSpacing(node, 'padding', '', location); } function getBorder(node, location) { return getPositiveSpacing(node, 'border', 'Width', location); } function getPaddingAndBorder(node, location) { return getPadding(node, location) + getBorder(node, location); } function getMarginAxis(node, axis) { return getMargin(node, leading[axis]) + getMargin(node, trailing[axis]); } function getPaddingAndBorderAxis(node, axis) { return getPaddingAndBorder(node, leading[axis]) + getPaddingAndBorder(node, trailing[axis]); } function getJustifyContent(node) { if ('justifyContent' in node.style) { return node.style.justifyContent; } return 'flex-start'; } function getAlignItem(node, child) { if ('alignSelf' in child.style) { return child.style.alignSelf; } if ('alignItems' in node.style) { return node.style.alignItems; } return 'flex-start'; } function getFlexDirection(node) { if ('flexDirection' in node.style) { return node.style.flexDirection; } return 'column'; } function getPositionType(node) { if ('position' in node.style) { return node.style.position; } return 'relative'; } function getFlex(node) { return node.style.flex === 1; } function isFlex(node) { return getPositionType(node) === CSS_POSITION_RELATIVE && getFlex(node); } function getDimWithMargin(node, axis) { return node.layout[dim[axis]] + getMarginAxis(node, axis); } function isDimDefined(node, axis) { return !isUndefined(node.style[dim[axis]]) && node.style[dim[axis]] >= 0; } function isPosDefined(node, pos) { return !isUndefined(node.style[pos]); } function isMeasureDefined(node) { return 'measure' in node.style; } function getPosition(node, pos) { if (pos in node.style) { return node.style[pos]; } return 0; } // When the user specifically sets a value for width or height function setDimensionFromStyle(node, axis) { // The parent already computed us a width or height. We just skip it if (!isUndefined(node.layout[dim[axis]])) { return; } // We only run if there's a width or height defined if (!isDimDefined(node, axis)) { return; } // The dimensions can never be smaller than the padding and border node.layout[dim[axis]] = fmaxf( node.style[dim[axis]], getPaddingAndBorderAxis(node, axis) ); } // If both left and right are defined, then use left. Otherwise return // +left or -right depending on which is defined. function getRelativePosition(node, axis) { if (leading[axis] in node.style) { return getPosition(node, leading[axis]); } return -getPosition(node, trailing[axis]); } var leading = { row: 'left', column: 'top' }; var trailing = { row: 'right', column: 'bottom' }; var pos = { row: 'left', column: 'top' }; var dim = { row: 'width', column: 'height' }; function fmaxf(a, b) { if (a > b) { return a; } return b; } var CSS_UNDEFINED = undefined; var CSS_FLEX_DIRECTION_ROW = 'row'; var CSS_FLEX_DIRECTION_COLUMN = 'column'; var CSS_JUSTIFY_FLEX_START = 'flex-start'; var CSS_JUSTIFY_CENTER = 'center'; var CSS_JUSTIFY_FLEX_END = 'flex-end'; var CSS_JUSTIFY_SPACE_BETWEEN = 'space-between'; var CSS_JUSTIFY_SPACE_AROUND = 'space-around'; var CSS_ALIGN_FLEX_START = 'flex-start'; var CSS_ALIGN_CENTER = 'center'; var CSS_ALIGN_FLEX_END = 'flex-end'; var CSS_ALIGN_STRETCH = 'stretch'; var CSS_POSITION_RELATIVE = 'relative'; var CSS_POSITION_ABSOLUTE = 'absolute'; var CSS_MEASURE_VALUE = 'value'; var CSS_MEASURE_GROW = 'grow'; var CSS_MEASURE_SHRINK = 'shrink'; return function layoutNode(node) { var/*css_flex_direction_t*/ mainAxis = getFlexDirection(node); var/*css_flex_direction_t*/ crossAxis = mainAxis === CSS_FLEX_DIRECTION_ROW ? CSS_FLEX_DIRECTION_COLUMN : CSS_FLEX_DIRECTION_ROW; // Handle width and height style attributes setDimensionFromStyle(node, mainAxis); setDimensionFromStyle(node, crossAxis); // The position is set by the parent, but we need to complete it with a // delta composed of the margin and left/top/right/bottom node.layout[leading[mainAxis]] += getMargin(node, leading[mainAxis]) + getRelativePosition(node, mainAxis); node.layout[leading[crossAxis]] += getMargin(node, leading[crossAxis]) + getRelativePosition(node, crossAxis); if (isMeasureDefined(node)) { var/*float*/ width = CSS_UNDEFINED; var/*css_measure_type_t*/ type = CSS_MEASURE_VALUE; if (isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) { width = node.style.width; } else if (getPositionType(node) == CSS_POSITION_ABSOLUTE) { type = CSS_MEASURE_SHRINK; } else { type = CSS_MEASURE_GROW; } var/*css_dim_t*/ measure_dim = node.style.measure( /*!node->style.measure_context,*/ type, width ); if (!isDimDefined(node, CSS_FLEX_DIRECTION_ROW)) { node.layout.width = measure_dim.width + getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_ROW); } if (!isDimDefined(node, CSS_FLEX_DIRECTION_COLUMN)) { node.layout.height = measure_dim.height + getPaddingAndBorderAxis(node, CSS_FLEX_DIRECTION_COLUMN); } return; } // Pre-fill cross axis dimensions when the child is using stretch before // we call the recursive layout pass for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*css_node_t**/ child = node.children[i]; if (getAlignItem(node, child) === CSS_ALIGN_STRETCH && getPositionType(child) === CSS_POSITION_RELATIVE && !isUndefined(node.layout[dim[crossAxis]]) && !isDimDefined(child, crossAxis) && !isPosDefined(child, leading[crossAxis])) { child.layout[dim[crossAxis]] = fmaxf( node.layout[dim[crossAxis]] - getPaddingAndBorderAxis(node, crossAxis) - getMarginAxis(child, crossAxis), // You never want to go smaller than padding getPaddingAndBorderAxis(child, crossAxis) ); } } // Layout non flexible children and count children by type // mainContentDim is accumulation of the dimensions and margin of all the // non flexible children. This will be used in order to either set the // dimensions of the node if none already exist, or to compute the // remaining space left for the flexible children. var/*float*/ mainContentDim = 0; // There are three kind of children, non flexible, flexible and absolute. // We need to know how many there are in order to distribute the space. var/*int*/ flexibleChildrenCount = 0; var/*int*/ nonFlexibleChildrenCount = 0; for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*css_node_t**/ child = node.children[i]; // It only makes sense to consider a child flexible if we have a computed // dimension for the node. if (!isUndefined(node.layout[dim[mainAxis]]) && isFlex(child)) { flexibleChildrenCount++; // Even if we don't know its exact size yet, we already know the padding, // border and margin. We'll use this partial information to compute the // remaining space. mainContentDim += getPaddingAndBorderAxis(child, mainAxis) + getMarginAxis(child, mainAxis); } else { // This is the main recursive call. We layout non flexible children. layoutNode(child); // Absolute positioned elements do not take part of the layout, so we // don't use them to compute mainContentDim if (getPositionType(child) === CSS_POSITION_RELATIVE) { nonFlexibleChildrenCount++; // At this point we know the final size and margin of the element. mainContentDim += getDimWithMargin(child, mainAxis); } } } // Layout flexible children and allocate empty space // In order to position the elements in the main axis, we have two // controls. The space between the beginning and the first element // and the space between each two elements. var/*float*/ leadingMainDim = 0; var/*float*/ betweenMainDim = 0; // If the dimensions of the current node is defined by its children, they // are all going to be packed together and we don't need to compute // anything. if (!isUndefined(node.layout[dim[mainAxis]])) { // The remaining available space that's needs to be allocated var/*float*/ remainingMainDim = node.layout[dim[mainAxis]] - getPaddingAndBorderAxis(node, mainAxis) - mainContentDim; // If there are flexible children in the mix, they are going to fill the // remaining space if (flexibleChildrenCount) { var/*float*/ flexibleMainDim = remainingMainDim / flexibleChildrenCount; // The non flexible children can overflow the container, in this case // we should just assume that there is no space available. if (flexibleMainDim < 0) { flexibleMainDim = 0; } // We iterate over the full array and only apply the action on flexible // children. This is faster than actually allocating a new array that // contains only flexible children. for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*css_node_t**/ child = node.children[i]; if (isFlex(child)) { // At this point we know the final size of the element in the main // dimension child.layout[dim[mainAxis]] = flexibleMainDim + getPaddingAndBorderAxis(child, mainAxis); // And we recursively call the layout algorithm for this child layoutNode(child); } } // We use justifyContent to figure out how to allocate the remaining // space available } else { var/*css_justify_t*/ justifyContent = getJustifyContent(node); if (justifyContent === CSS_JUSTIFY_FLEX_START) { // Do nothing } else if (justifyContent === CSS_JUSTIFY_CENTER) { leadingMainDim = remainingMainDim / 2; } else if (justifyContent === CSS_JUSTIFY_FLEX_END) { leadingMainDim = remainingMainDim; } else if (justifyContent === CSS_JUSTIFY_SPACE_BETWEEN) { betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount - 1); } else if (justifyContent === CSS_JUSTIFY_SPACE_AROUND) { // Space on the edges is half of the space between elements betweenMainDim = remainingMainDim / (flexibleChildrenCount + nonFlexibleChildrenCount); leadingMainDim = betweenMainDim / 2; } } } // Position elements in the main axis and compute dimensions // At this point, all the children have their dimensions set. We need to // find their position. In order to do that, we accumulate data in // variables that are also useful to compute the total dimensions of the // container! var/*float*/ crossDim = 0; var/*float*/ mainDim = leadingMainDim + getPaddingAndBorder(node, leading[mainAxis]); for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*css_node_t**/ child = node.children[i]; if (getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[mainAxis])) { // In case the child is position absolute and has left/top being // defined, we override the position to whatever the user said // (and margin/border). child.layout[pos[mainAxis]] = getPosition(child, leading[mainAxis]) + getBorder(node, leading[mainAxis]) + getMargin(child, leading[mainAxis]); } else { // If the child is position absolute (without top/left) or relative, // we put it at the current accumulated offset. child.layout[pos[mainAxis]] += mainDim; } // Now that we placed the element, we need to update the variables // We only need to do that for relative elements. Absolute elements // do not take part in that phase. if (getPositionType(child) === CSS_POSITION_RELATIVE) { // The main dimension is the sum of all the elements dimension plus // the spacing. mainDim += betweenMainDim + getDimWithMargin(child, mainAxis); // The cross dimension is the max of the elements dimension since there // can only be one element in that cross dimension. crossDim = fmaxf(crossDim, getDimWithMargin(child, crossAxis)); } } // If the user didn't specify a width or height, and it has not been set // by the container, then we set it via the children. if (isUndefined(node.layout[dim[mainAxis]])) { node.layout[dim[mainAxis]] = fmaxf( // We're missing the last padding at this point to get the final // dimension mainDim + getPaddingAndBorder(node, trailing[mainAxis]), // We can never assign a width smaller than the padding and borders getPaddingAndBorderAxis(node, mainAxis) ); } if (isUndefined(node.layout[dim[crossAxis]])) { node.layout[dim[crossAxis]] = fmaxf( // For the cross dim, we add both sides at the end because the value // is aggregate via a max function. Intermediate negative values // can mess this computation otherwise crossDim + getPaddingAndBorderAxis(node, crossAxis), getPaddingAndBorderAxis(node, crossAxis) ); } // Position elements in the cross axis for (var/*int*/ i = 0; i < node.children.length; ++i) { var/*css_node_t**/ child = node.children[i]; if (getPositionType(child) === CSS_POSITION_ABSOLUTE && isPosDefined(child, leading[crossAxis])) { // In case the child is absolutely positionned and has a // top/left/bottom/right being set, we override all the previously // computed positions to set it correctly. child.layout[pos[crossAxis]] = getPosition(child, leading[crossAxis]) + getBorder(node, leading[crossAxis]) + getMargin(child, leading[crossAxis]); } else { var/*float*/ leadingCrossDim = getPaddingAndBorder(node, leading[crossAxis]); // For a relative children, we're either using alignItems (parent) or // alignSelf (child) in order to determine the position in the cross axis if (getPositionType(child) === CSS_POSITION_RELATIVE) { var/*css_align_t*/ alignItem = getAlignItem(node, child); if (alignItem === CSS_ALIGN_FLEX_START) { // Do nothing } else if (alignItem === CSS_ALIGN_STRETCH) { // You can only stretch if the dimension has not already been set // previously. if (!isDimDefined(child, crossAxis)) { child.layout[dim[crossAxis]] = fmaxf( node.layout[dim[crossAxis]] - getPaddingAndBorderAxis(node, crossAxis) - getMarginAxis(child, crossAxis), // You never want to go smaller than padding getPaddingAndBorderAxis(child, crossAxis) ); } } else { // The remaining space between the parent dimensions+padding and child // dimensions+margin. var/*float*/ remainingCrossDim = node.layout[dim[crossAxis]] - getPaddingAndBorderAxis(node, crossAxis) - getDimWithMargin(child, crossAxis); if (alignItem === CSS_ALIGN_CENTER) { leadingCrossDim += remainingCrossDim / 2; } else { // CSS_ALIGN_FLEX_END leadingCrossDim += remainingCrossDim; } } } // And we apply the position child.layout[pos[crossAxis]] += leadingCrossDim; } } } })();