Summary: Adds new ```space-evenly``` for ```justify-content```. Also adds a typofix in one of the other justify-content tests. Fixes #657 Closes https://github.com/facebook/yoga/pull/658 Differential Revision: D6407996 Pulled By: emilsjolander fbshipit-source-id: cc837409e1345624b4bd72c31e25fe68dcb0f6a3
3515 lines
153 KiB
C++
3515 lines
153 KiB
C++
/**
|
|
* Copyright (c) 2014-present, Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD-style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*/
|
|
|
|
#include <string.h>
|
|
|
|
#include "YGNodeList.h"
|
|
#include "YGNodePrint.h"
|
|
#include "Yoga-internal.h"
|
|
#include "Yoga.h"
|
|
|
|
#ifdef _MSC_VER
|
|
#include <float.h>
|
|
#ifndef isnan
|
|
#define isnan _isnan
|
|
#endif
|
|
#ifndef __cplusplus
|
|
#define inline __inline
|
|
#endif
|
|
|
|
/* define fmaxf if < VC12 */
|
|
#if _MSC_VER < 1800
|
|
__forceinline const float fmaxf(const float a, const float b) {
|
|
return (a > b) ? a : b;
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef ANDROID
|
|
static int YGAndroidLog(const YGConfigRef config,
|
|
const YGNodeRef node,
|
|
YGLogLevel level,
|
|
const char *format,
|
|
va_list args);
|
|
#else
|
|
static int YGDefaultLog(const YGConfigRef config,
|
|
const YGNodeRef node,
|
|
YGLogLevel level,
|
|
const char *format,
|
|
va_list args);
|
|
#endif
|
|
|
|
static YGConfig gYGConfigDefaults = {
|
|
.experimentalFeatures =
|
|
{
|
|
[YGExperimentalFeatureWebFlexBasis] = false,
|
|
},
|
|
.useWebDefaults = false,
|
|
.useLegacyStretchBehaviour = false,
|
|
.pointScaleFactor = 1.0f,
|
|
#ifdef ANDROID
|
|
.logger = &YGAndroidLog,
|
|
#else
|
|
.logger = &YGDefaultLog,
|
|
#endif
|
|
.cloneNodeCallback = nullptr,
|
|
.context = nullptr,
|
|
};
|
|
|
|
static void YGNodeMarkDirtyInternal(const YGNodeRef node);
|
|
|
|
static YGValue YGValueZero = {.value = 0, .unit = YGUnitPoint};
|
|
|
|
#ifdef ANDROID
|
|
#include <android/log.h>
|
|
static int YGAndroidLog(const YGConfigRef config,
|
|
const YGNodeRef node,
|
|
YGLogLevel level,
|
|
const char *format,
|
|
va_list args) {
|
|
int androidLevel = YGLogLevelDebug;
|
|
switch (level) {
|
|
case YGLogLevelFatal:
|
|
androidLevel = ANDROID_LOG_FATAL;
|
|
break;
|
|
case YGLogLevelError:
|
|
androidLevel = ANDROID_LOG_ERROR;
|
|
break;
|
|
case YGLogLevelWarn:
|
|
androidLevel = ANDROID_LOG_WARN;
|
|
break;
|
|
case YGLogLevelInfo:
|
|
androidLevel = ANDROID_LOG_INFO;
|
|
break;
|
|
case YGLogLevelDebug:
|
|
androidLevel = ANDROID_LOG_DEBUG;
|
|
break;
|
|
case YGLogLevelVerbose:
|
|
androidLevel = ANDROID_LOG_VERBOSE;
|
|
break;
|
|
}
|
|
const int result = __android_log_vprint(androidLevel, "yoga", format, args);
|
|
return result;
|
|
}
|
|
#else
|
|
static int YGDefaultLog(const YGConfigRef config,
|
|
const YGNodeRef node,
|
|
YGLogLevel level,
|
|
const char *format,
|
|
va_list args) {
|
|
switch (level) {
|
|
case YGLogLevelError:
|
|
case YGLogLevelFatal:
|
|
return vfprintf(stderr, format, args);
|
|
case YGLogLevelWarn:
|
|
case YGLogLevelInfo:
|
|
case YGLogLevelDebug:
|
|
case YGLogLevelVerbose:
|
|
default:
|
|
return vprintf(format, args);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
bool YGFloatIsUndefined(const float value) {
|
|
return isnan(value);
|
|
}
|
|
|
|
const YGValue* YGComputedEdgeValue(
|
|
const YGValue edges[YGEdgeCount],
|
|
const YGEdge edge,
|
|
const YGValue* const defaultValue) {
|
|
if (edges[edge].unit != YGUnitUndefined) {
|
|
return &edges[edge];
|
|
}
|
|
|
|
if ((edge == YGEdgeTop || edge == YGEdgeBottom) &&
|
|
edges[YGEdgeVertical].unit != YGUnitUndefined) {
|
|
return &edges[YGEdgeVertical];
|
|
}
|
|
|
|
if ((edge == YGEdgeLeft || edge == YGEdgeRight || edge == YGEdgeStart || edge == YGEdgeEnd) &&
|
|
edges[YGEdgeHorizontal].unit != YGUnitUndefined) {
|
|
return &edges[YGEdgeHorizontal];
|
|
}
|
|
|
|
if (edges[YGEdgeAll].unit != YGUnitUndefined) {
|
|
return &edges[YGEdgeAll];
|
|
}
|
|
|
|
if (edge == YGEdgeStart || edge == YGEdgeEnd) {
|
|
return &YGValueUndefined;
|
|
}
|
|
|
|
return defaultValue;
|
|
}
|
|
|
|
static inline float YGResolveValue(const YGValue *const value, const float parentSize) {
|
|
switch (value->unit) {
|
|
case YGUnitUndefined:
|
|
case YGUnitAuto:
|
|
return YGUndefined;
|
|
case YGUnitPoint:
|
|
return value->value;
|
|
case YGUnitPercent:
|
|
return value->value * parentSize / 100.0f;
|
|
}
|
|
return YGUndefined;
|
|
}
|
|
|
|
static inline float YGResolveValueMargin(const YGValue *const value, const float parentSize) {
|
|
return value->unit == YGUnitAuto ? 0 : YGResolveValue(value, parentSize);
|
|
}
|
|
|
|
int32_t gNodeInstanceCount = 0;
|
|
int32_t gConfigInstanceCount = 0;
|
|
|
|
WIN_EXPORT YGNodeRef YGNodeNewWithConfig(const YGConfigRef config) {
|
|
const YGNodeRef node = (const YGNodeRef)malloc(sizeof(YGNode));
|
|
YGAssertWithConfig(
|
|
config, node != nullptr, "Could not allocate memory for node");
|
|
gNodeInstanceCount++;
|
|
|
|
memcpy(node, &gYGNodeDefaults, sizeof(YGNode));
|
|
if (config->useWebDefaults) {
|
|
node->style.flexDirection = YGFlexDirectionRow;
|
|
node->style.alignContent = YGAlignStretch;
|
|
}
|
|
node->config = config;
|
|
return node;
|
|
}
|
|
|
|
YGNodeRef YGNodeNew(void) {
|
|
return YGNodeNewWithConfig(&gYGConfigDefaults);
|
|
}
|
|
|
|
YGNodeRef YGNodeClone(const YGNodeRef oldNode) {
|
|
const YGNodeRef node = (const YGNodeRef)malloc(sizeof(YGNode));
|
|
YGAssertWithConfig(
|
|
oldNode->config, node != nullptr, "Could not allocate memory for node");
|
|
gNodeInstanceCount++;
|
|
|
|
memcpy(node, oldNode, sizeof(YGNode));
|
|
node->children = YGNodeListClone(oldNode->children);
|
|
node->parent = nullptr;
|
|
return node;
|
|
}
|
|
|
|
void YGNodeFree(const YGNodeRef node) {
|
|
if (node->parent) {
|
|
YGNodeListDelete(node->parent->children, node);
|
|
node->parent = nullptr;
|
|
}
|
|
|
|
const uint32_t childCount = YGNodeGetChildCount(node);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
child->parent = nullptr;
|
|
}
|
|
|
|
YGNodeListFree(node->children);
|
|
free(node);
|
|
gNodeInstanceCount--;
|
|
}
|
|
|
|
void YGNodeFreeRecursive(const YGNodeRef root) {
|
|
while (YGNodeGetChildCount(root) > 0) {
|
|
const YGNodeRef child = YGNodeGetChild(root, 0);
|
|
if (child->parent != root) {
|
|
// Don't free shared nodes that we don't own.
|
|
break;
|
|
}
|
|
YGNodeRemoveChild(root, child);
|
|
YGNodeFreeRecursive(child);
|
|
}
|
|
YGNodeFree(root);
|
|
}
|
|
|
|
void YGNodeReset(const YGNodeRef node) {
|
|
YGAssertWithNode(node,
|
|
YGNodeGetChildCount(node) == 0,
|
|
"Cannot reset a node which still has children attached");
|
|
YGAssertWithNode(
|
|
node,
|
|
node->parent == nullptr,
|
|
"Cannot reset a node still attached to a parent");
|
|
|
|
YGNodeListFree(node->children);
|
|
|
|
const YGConfigRef config = node->config;
|
|
memcpy(node, &gYGNodeDefaults, sizeof(YGNode));
|
|
if (config->useWebDefaults) {
|
|
node->style.flexDirection = YGFlexDirectionRow;
|
|
node->style.alignContent = YGAlignStretch;
|
|
}
|
|
node->config = config;
|
|
}
|
|
|
|
int32_t YGNodeGetInstanceCount(void) {
|
|
return gNodeInstanceCount;
|
|
}
|
|
|
|
int32_t YGConfigGetInstanceCount(void) {
|
|
return gConfigInstanceCount;
|
|
}
|
|
|
|
// Export only for C#
|
|
YGConfigRef YGConfigGetDefault() {
|
|
return &gYGConfigDefaults;
|
|
}
|
|
|
|
YGConfigRef YGConfigNew(void) {
|
|
const YGConfigRef config = (const YGConfigRef)malloc(sizeof(YGConfig));
|
|
YGAssert(config != nullptr, "Could not allocate memory for config");
|
|
|
|
gConfigInstanceCount++;
|
|
memcpy(config, &gYGConfigDefaults, sizeof(YGConfig));
|
|
return config;
|
|
}
|
|
|
|
void YGConfigFree(const YGConfigRef config) {
|
|
free(config);
|
|
gConfigInstanceCount--;
|
|
}
|
|
|
|
void YGConfigCopy(const YGConfigRef dest, const YGConfigRef src) {
|
|
memcpy(dest, src, sizeof(YGConfig));
|
|
}
|
|
|
|
static void YGNodeMarkDirtyInternal(const YGNodeRef node) {
|
|
if (!node->isDirty) {
|
|
node->isDirty = true;
|
|
node->layout.computedFlexBasis = YGUndefined;
|
|
if (node->parent) {
|
|
YGNodeMarkDirtyInternal(node->parent);
|
|
}
|
|
}
|
|
}
|
|
|
|
void YGNodeSetMeasureFunc(const YGNodeRef node, YGMeasureFunc measureFunc) {
|
|
if (measureFunc == nullptr) {
|
|
node->measure = nullptr;
|
|
// TODO: t18095186 Move nodeType to opt-in function and mark appropriate places in Litho
|
|
node->nodeType = YGNodeTypeDefault;
|
|
} else {
|
|
YGAssertWithNode(
|
|
node,
|
|
YGNodeGetChildCount(node) == 0,
|
|
"Cannot set measure function: Nodes with measure functions cannot have children.");
|
|
node->measure = measureFunc;
|
|
// TODO: t18095186 Move nodeType to opt-in function and mark appropriate places in Litho
|
|
node->nodeType = YGNodeTypeText;
|
|
}
|
|
}
|
|
|
|
YGMeasureFunc YGNodeGetMeasureFunc(const YGNodeRef node) {
|
|
return node->measure;
|
|
}
|
|
|
|
void YGNodeSetBaselineFunc(const YGNodeRef node, YGBaselineFunc baselineFunc) {
|
|
node->baseline = baselineFunc;
|
|
}
|
|
|
|
YGBaselineFunc YGNodeGetBaselineFunc(const YGNodeRef node) {
|
|
return node->baseline;
|
|
}
|
|
|
|
static void YGCloneChildrenIfNeeded(const YGNodeRef parent) {
|
|
// YGNodeRemoveChild has a forked variant of this algorithm optimized for deletions.
|
|
const uint32_t childCount = YGNodeGetChildCount(parent);
|
|
if (childCount == 0) {
|
|
// This is an empty set. Nothing to clone.
|
|
return;
|
|
}
|
|
const YGNodeRef firstChild = YGNodeGetChild(parent, 0);
|
|
if (firstChild->parent == parent) {
|
|
// If the first child has this node as its parent, we assume that it is already unique.
|
|
// We can do this because if we have it has a child, that means that its parent was at some
|
|
// point cloned which made that subtree immutable.
|
|
// We also assume that all its sibling are cloned as well.
|
|
return;
|
|
}
|
|
const YGNodeClonedFunc cloneNodeCallback = parent->config->cloneNodeCallback;
|
|
const YGNodeListRef children = parent->children;
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef oldChild = YGNodeListGet(children, i);
|
|
const YGNodeRef newChild = YGNodeClone(oldChild);
|
|
YGNodeListReplace(children, i, newChild);
|
|
newChild->parent = parent;
|
|
if (cloneNodeCallback) {
|
|
cloneNodeCallback(oldChild, newChild, parent, i);
|
|
}
|
|
}
|
|
}
|
|
|
|
void YGNodeInsertChild(const YGNodeRef node, const YGNodeRef child, const uint32_t index) {
|
|
YGAssertWithNode(
|
|
node,
|
|
child->parent == nullptr,
|
|
"Child already has a parent, it must be removed first.");
|
|
YGAssertWithNode(
|
|
node,
|
|
node->measure == nullptr,
|
|
"Cannot add child: Nodes with measure functions cannot have children.");
|
|
|
|
YGCloneChildrenIfNeeded(node);
|
|
|
|
YGNodeListInsert(&node->children, child, index);
|
|
child->parent = node;
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
|
|
void YGNodeRemoveChild(const YGNodeRef parent, const YGNodeRef excludedChild) {
|
|
// This algorithm is a forked variant from YGCloneChildrenIfNeeded that excludes a child.
|
|
const uint32_t childCount = YGNodeGetChildCount(parent);
|
|
if (childCount == 0) {
|
|
// This is an empty set. Nothing to remove.
|
|
return;
|
|
}
|
|
const YGNodeRef firstChild = YGNodeGetChild(parent, 0);
|
|
if (firstChild->parent == parent) {
|
|
// If the first child has this node as its parent, we assume that it is already unique.
|
|
// We can now try to delete a child in this list.
|
|
if (YGNodeListDelete(parent->children, excludedChild) != nullptr) {
|
|
excludedChild->layout = gYGNodeDefaults.layout; // layout is no longer valid
|
|
excludedChild->parent = nullptr;
|
|
YGNodeMarkDirtyInternal(parent);
|
|
}
|
|
return;
|
|
}
|
|
// Otherwise we have to clone the node list except for the child we're trying to delete.
|
|
// We don't want to simply clone all children, because then the host will need to free
|
|
// the clone of the child that was just deleted.
|
|
const YGNodeClonedFunc cloneNodeCallback = parent->config->cloneNodeCallback;
|
|
const YGNodeListRef children = parent->children;
|
|
uint32_t nextInsertIndex = 0;
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef oldChild = YGNodeListGet(children, i);
|
|
if (excludedChild == oldChild) {
|
|
// Ignore the deleted child. Don't reset its layout or parent since it is still valid
|
|
// in the other parent. However, since this parent has now changed, we need to mark it
|
|
// as dirty.
|
|
YGNodeMarkDirtyInternal(parent);
|
|
continue;
|
|
}
|
|
const YGNodeRef newChild = YGNodeClone(oldChild);
|
|
YGNodeListReplace(children, nextInsertIndex, newChild);
|
|
newChild->parent = parent;
|
|
if (cloneNodeCallback) {
|
|
cloneNodeCallback(oldChild, newChild, parent, nextInsertIndex);
|
|
}
|
|
nextInsertIndex++;
|
|
}
|
|
while (nextInsertIndex < childCount) {
|
|
YGNodeListRemove(children, nextInsertIndex);
|
|
nextInsertIndex++;
|
|
}
|
|
}
|
|
|
|
void YGNodeRemoveAllChildren(const YGNodeRef parent) {
|
|
const uint32_t childCount = YGNodeGetChildCount(parent);
|
|
if (childCount == 0) {
|
|
// This is an empty set already. Nothing to do.
|
|
return;
|
|
}
|
|
const YGNodeRef firstChild = YGNodeGetChild(parent, 0);
|
|
if (firstChild->parent == parent) {
|
|
// If the first child has this node as its parent, we assume that this child set is unique.
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef oldChild = YGNodeGetChild(parent, i);
|
|
oldChild->layout = gYGNodeDefaults.layout; // layout is no longer valid
|
|
oldChild->parent = nullptr;
|
|
}
|
|
YGNodeListRemoveAll(parent->children);
|
|
YGNodeMarkDirtyInternal(parent);
|
|
return;
|
|
}
|
|
// Otherwise, we are not the owner of the child set. We don't have to do anything to clear it.
|
|
parent->children = nullptr;
|
|
YGNodeMarkDirtyInternal(parent);
|
|
}
|
|
|
|
YGNodeRef YGNodeGetChild(const YGNodeRef node, const uint32_t index) {
|
|
return YGNodeListGet(node->children, index);
|
|
}
|
|
|
|
YGNodeRef YGNodeGetParent(const YGNodeRef node) {
|
|
return node->parent;
|
|
}
|
|
|
|
uint32_t YGNodeGetChildCount(const YGNodeRef node) {
|
|
return YGNodeListCount(node->children);
|
|
}
|
|
|
|
void YGNodeMarkDirty(const YGNodeRef node) {
|
|
YGAssertWithNode(
|
|
node,
|
|
node->measure != nullptr,
|
|
"Only leaf nodes with custom measure functions"
|
|
"should manually mark themselves as dirty");
|
|
|
|
YGNodeMarkDirtyInternal(node);
|
|
}
|
|
|
|
bool YGNodeIsDirty(const YGNodeRef node) {
|
|
return node->isDirty;
|
|
}
|
|
|
|
void YGNodeCopyStyle(const YGNodeRef dstNode, const YGNodeRef srcNode) {
|
|
if (memcmp(&dstNode->style, &srcNode->style, sizeof(YGStyle)) != 0) {
|
|
memcpy(&dstNode->style, &srcNode->style, sizeof(YGStyle));
|
|
YGNodeMarkDirtyInternal(dstNode);
|
|
}
|
|
}
|
|
|
|
static inline float YGResolveFlexGrow(const YGNodeRef node) {
|
|
// Root nodes flexGrow should always be 0
|
|
if (node->parent == nullptr) {
|
|
return 0.0;
|
|
}
|
|
if (!YGFloatIsUndefined(node->style.flexGrow)) {
|
|
return node->style.flexGrow;
|
|
}
|
|
if (!YGFloatIsUndefined(node->style.flex) && node->style.flex > 0.0f) {
|
|
return node->style.flex;
|
|
}
|
|
return kDefaultFlexGrow;
|
|
}
|
|
|
|
float YGNodeStyleGetFlexGrow(const YGNodeRef node) {
|
|
return YGFloatIsUndefined(node->style.flexGrow) ? kDefaultFlexGrow : node->style.flexGrow;
|
|
}
|
|
|
|
float YGNodeStyleGetFlexShrink(const YGNodeRef node) {
|
|
return YGFloatIsUndefined(node->style.flexShrink)
|
|
? (node->config->useWebDefaults ? kWebDefaultFlexShrink : kDefaultFlexShrink)
|
|
: node->style.flexShrink;
|
|
}
|
|
|
|
static inline float YGNodeResolveFlexShrink(const YGNodeRef node) {
|
|
// Root nodes flexShrink should always be 0
|
|
if (node->parent == nullptr) {
|
|
return 0.0;
|
|
}
|
|
if (!YGFloatIsUndefined(node->style.flexShrink)) {
|
|
return node->style.flexShrink;
|
|
}
|
|
if (!node->config->useWebDefaults && !YGFloatIsUndefined(node->style.flex) &&
|
|
node->style.flex < 0.0f) {
|
|
return -node->style.flex;
|
|
}
|
|
return node->config->useWebDefaults ? kWebDefaultFlexShrink : kDefaultFlexShrink;
|
|
}
|
|
|
|
static inline const YGValue *YGNodeResolveFlexBasisPtr(const YGNodeRef node) {
|
|
if (node->style.flexBasis.unit != YGUnitAuto && node->style.flexBasis.unit != YGUnitUndefined) {
|
|
return &node->style.flexBasis;
|
|
}
|
|
if (!YGFloatIsUndefined(node->style.flex) && node->style.flex > 0.0f) {
|
|
return node->config->useWebDefaults ? &YGValueAuto : &YGValueZero;
|
|
}
|
|
return &YGValueAuto;
|
|
}
|
|
|
|
#define YG_NODE_PROPERTY_IMPL(type, name, paramName, instanceName) \
|
|
void YGNodeSet##name(const YGNodeRef node, type paramName) { \
|
|
node->instanceName = paramName; \
|
|
} \
|
|
\
|
|
type YGNodeGet##name(const YGNodeRef node) { \
|
|
return node->instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_SETTER_IMPL(type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name(const YGNodeRef node, const type paramName) { \
|
|
if (node->style.instanceName != paramName) { \
|
|
node->style.instanceName = paramName; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_SETTER_UNIT_IMPL( \
|
|
type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name(const YGNodeRef node, const type paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPoint, \
|
|
}; \
|
|
if ((node->style.instanceName.value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName.unit != value.unit) { \
|
|
node->style.instanceName = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
void YGNodeStyleSet##name##Percent( \
|
|
const YGNodeRef node, const type paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = \
|
|
YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPercent, \
|
|
}; \
|
|
if ((node->style.instanceName.value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName.unit != value.unit) { \
|
|
node->style.instanceName = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_SETTER_UNIT_AUTO_IMPL( \
|
|
type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name(const YGNodeRef node, const type paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPoint, \
|
|
}; \
|
|
if ((node->style.instanceName.value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName.unit != value.unit) { \
|
|
node->style.instanceName = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
void YGNodeStyleSet##name##Percent( \
|
|
const YGNodeRef node, const type paramName) { \
|
|
if (node->style.instanceName.value != paramName || \
|
|
node->style.instanceName.unit != YGUnitPercent) { \
|
|
node->style.instanceName.value = paramName; \
|
|
node->style.instanceName.unit = \
|
|
YGFloatIsUndefined(paramName) ? YGUnitAuto : YGUnitPercent; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
void YGNodeStyleSet##name##Auto(const YGNodeRef node) { \
|
|
if (node->style.instanceName.unit != YGUnitAuto) { \
|
|
node->style.instanceName.value = YGUndefined; \
|
|
node->style.instanceName.unit = YGUnitAuto; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_IMPL(type, name, paramName, instanceName) \
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(type, name, paramName, instanceName) \
|
|
\
|
|
type YGNodeStyleGet##name(const YGNodeRef node) { \
|
|
return node->style.instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_UNIT_IMPL(type, name, paramName, instanceName) \
|
|
YG_NODE_STYLE_PROPERTY_SETTER_UNIT_IMPL(float, name, paramName, instanceName) \
|
|
\
|
|
type YGNodeStyleGet##name(const YGNodeRef node) { \
|
|
return node->style.instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_PROPERTY_UNIT_AUTO_IMPL(type, name, paramName, instanceName) \
|
|
YG_NODE_STYLE_PROPERTY_SETTER_UNIT_AUTO_IMPL(float, name, paramName, instanceName) \
|
|
\
|
|
type YGNodeStyleGet##name(const YGNodeRef node) { \
|
|
return node->style.instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_EDGE_PROPERTY_UNIT_AUTO_IMPL(type, name, instanceName) \
|
|
void YGNodeStyleSet##name##Auto(const YGNodeRef node, const YGEdge edge) { \
|
|
if (node->style.instanceName[edge].unit != YGUnitAuto) { \
|
|
node->style.instanceName[edge].value = YGUndefined; \
|
|
node->style.instanceName[edge].unit = YGUnitAuto; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_EDGE_PROPERTY_UNIT_IMPL( \
|
|
type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name( \
|
|
const YGNodeRef node, const YGEdge edge, const float paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPoint, \
|
|
}; \
|
|
if ((node->style.instanceName[edge].value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName[edge].unit != value.unit) { \
|
|
node->style.instanceName[edge] = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
void YGNodeStyleSet##name##Percent( \
|
|
const YGNodeRef node, const YGEdge edge, const float paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = \
|
|
YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPercent, \
|
|
}; \
|
|
if ((node->style.instanceName[edge].value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName[edge].unit != value.unit) { \
|
|
node->style.instanceName[edge] = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
WIN_STRUCT(type) \
|
|
YGNodeStyleGet##name(const YGNodeRef node, const YGEdge edge) { \
|
|
return WIN_STRUCT_REF(node->style.instanceName[edge]); \
|
|
}
|
|
|
|
#define YG_NODE_STYLE_EDGE_PROPERTY_IMPL(type, name, paramName, instanceName) \
|
|
void YGNodeStyleSet##name( \
|
|
const YGNodeRef node, const YGEdge edge, const float paramName) { \
|
|
YGValue value = { \
|
|
.value = paramName, \
|
|
.unit = YGFloatIsUndefined(paramName) ? YGUnitUndefined : YGUnitPoint, \
|
|
}; \
|
|
if ((node->style.instanceName[edge].value != value.value && \
|
|
value.unit != YGUnitUndefined) || \
|
|
node->style.instanceName[edge].unit != value.unit) { \
|
|
node->style.instanceName[edge] = value; \
|
|
YGNodeMarkDirtyInternal(node); \
|
|
} \
|
|
} \
|
|
\
|
|
float YGNodeStyleGet##name(const YGNodeRef node, const YGEdge edge) { \
|
|
return node->style.instanceName[edge].value; \
|
|
}
|
|
|
|
#define YG_NODE_LAYOUT_PROPERTY_IMPL(type, name, instanceName) \
|
|
type YGNodeLayoutGet##name(const YGNodeRef node) { \
|
|
return node->layout.instanceName; \
|
|
}
|
|
|
|
#define YG_NODE_LAYOUT_RESOLVED_PROPERTY_IMPL(type, name, instanceName) \
|
|
type YGNodeLayoutGet##name(const YGNodeRef node, const YGEdge edge) { \
|
|
YGAssertWithNode( \
|
|
node, \
|
|
edge <= YGEdgeEnd, \
|
|
"Cannot get layout properties of multi-edge shorthands"); \
|
|
\
|
|
if (edge == YGEdgeLeft) { \
|
|
if (node->layout.direction == YGDirectionRTL) { \
|
|
return node->layout.instanceName[YGEdgeEnd]; \
|
|
} else { \
|
|
return node->layout.instanceName[YGEdgeStart]; \
|
|
} \
|
|
} \
|
|
\
|
|
if (edge == YGEdgeRight) { \
|
|
if (node->layout.direction == YGDirectionRTL) { \
|
|
return node->layout.instanceName[YGEdgeStart]; \
|
|
} else { \
|
|
return node->layout.instanceName[YGEdgeEnd]; \
|
|
} \
|
|
} \
|
|
\
|
|
return node->layout.instanceName[edge]; \
|
|
}
|
|
|
|
YG_NODE_PROPERTY_IMPL(void *, Context, context, context);
|
|
YG_NODE_PROPERTY_IMPL(YGPrintFunc, PrintFunc, printFunc, print);
|
|
YG_NODE_PROPERTY_IMPL(bool, HasNewLayout, hasNewLayout, hasNewLayout);
|
|
YG_NODE_PROPERTY_IMPL(YGNodeType, NodeType, nodeType, nodeType);
|
|
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGDirection, Direction, direction, direction);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGFlexDirection, FlexDirection, flexDirection, flexDirection);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGJustify, JustifyContent, justifyContent, justifyContent);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignContent, alignContent, alignContent);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignItems, alignItems, alignItems);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGAlign, AlignSelf, alignSelf, alignSelf);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGPositionType, PositionType, positionType, positionType);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGWrap, FlexWrap, flexWrap, flexWrap);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGOverflow, Overflow, overflow, overflow);
|
|
YG_NODE_STYLE_PROPERTY_IMPL(YGDisplay, Display, display, display);
|
|
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, Flex, flex, flex);
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(float, FlexGrow, flexGrow, flexGrow);
|
|
YG_NODE_STYLE_PROPERTY_SETTER_IMPL(float, FlexShrink, flexShrink, flexShrink);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_AUTO_IMPL(YGValue, FlexBasis, flexBasis, flexBasis);
|
|
|
|
YG_NODE_STYLE_EDGE_PROPERTY_UNIT_IMPL(YGValue, Position, position, position);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_UNIT_IMPL(YGValue, Margin, margin, margin);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_UNIT_AUTO_IMPL(YGValue, Margin, margin);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_UNIT_IMPL(YGValue, Padding, padding, padding);
|
|
YG_NODE_STYLE_EDGE_PROPERTY_IMPL(float, Border, border, border);
|
|
|
|
YG_NODE_STYLE_PROPERTY_UNIT_AUTO_IMPL(YGValue, Width, width, dimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_AUTO_IMPL(YGValue, Height, height, dimensions[YGDimensionHeight]);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_IMPL(YGValue, MinWidth, minWidth, minDimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_IMPL(YGValue, MinHeight, minHeight, minDimensions[YGDimensionHeight]);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_IMPL(YGValue, MaxWidth, maxWidth, maxDimensions[YGDimensionWidth]);
|
|
YG_NODE_STYLE_PROPERTY_UNIT_IMPL(YGValue, MaxHeight, maxHeight, maxDimensions[YGDimensionHeight]);
|
|
|
|
// Yoga specific properties, not compatible with flexbox specification
|
|
YG_NODE_STYLE_PROPERTY_IMPL(float, AspectRatio, aspectRatio, aspectRatio);
|
|
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Left, position[YGEdgeLeft]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Top, position[YGEdgeTop]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Right, position[YGEdgeRight]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Bottom, position[YGEdgeBottom]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Width, dimensions[YGDimensionWidth]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(float, Height, dimensions[YGDimensionHeight]);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(YGDirection, Direction, direction);
|
|
YG_NODE_LAYOUT_PROPERTY_IMPL(bool, HadOverflow, hadOverflow);
|
|
|
|
YG_NODE_LAYOUT_RESOLVED_PROPERTY_IMPL(float, Margin, margin);
|
|
YG_NODE_LAYOUT_RESOLVED_PROPERTY_IMPL(float, Border, border);
|
|
YG_NODE_LAYOUT_RESOLVED_PROPERTY_IMPL(float, Padding, padding);
|
|
|
|
uint32_t gCurrentGenerationCount = 0;
|
|
|
|
bool YGLayoutNodeInternal(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight,
|
|
const bool performLayout,
|
|
const char *reason,
|
|
const YGConfigRef config);
|
|
|
|
bool YGValueEqual(const YGValue a, const YGValue b) {
|
|
if (a.unit != b.unit) {
|
|
return false;
|
|
}
|
|
|
|
if (a.unit == YGUnitUndefined) {
|
|
return true;
|
|
}
|
|
|
|
return fabs(a.value - b.value) < 0.0001f;
|
|
}
|
|
|
|
static inline void YGResolveDimensions(YGNodeRef node) {
|
|
for (uint32_t dim = YGDimensionWidth; dim < YGDimensionCount; dim++) {
|
|
if (node->style.maxDimensions[dim].unit != YGUnitUndefined &&
|
|
YGValueEqual(node->style.maxDimensions[dim], node->style.minDimensions[dim])) {
|
|
node->resolvedDimensions[dim] = &node->style.maxDimensions[dim];
|
|
} else {
|
|
node->resolvedDimensions[dim] = &node->style.dimensions[dim];
|
|
}
|
|
}
|
|
}
|
|
|
|
bool YGFloatsEqual(const float a, const float b) {
|
|
if (YGFloatIsUndefined(a)) {
|
|
return YGFloatIsUndefined(b);
|
|
}
|
|
return fabs(a - b) < 0.0001f;
|
|
}
|
|
|
|
static void YGNodePrintInternal(const YGNodeRef node,
|
|
const YGPrintOptions options) {
|
|
std::string str;
|
|
facebook::yoga::YGNodeToString(&str, node, options, 0);
|
|
YGLog(node, YGLogLevelDebug, str.c_str());
|
|
}
|
|
|
|
void YGNodePrint(const YGNodeRef node, const YGPrintOptions options) {
|
|
YGNodePrintInternal(node, options);
|
|
}
|
|
|
|
static const YGEdge leading[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeTop,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeBottom,
|
|
[YGFlexDirectionRow] = YGEdgeLeft,
|
|
[YGFlexDirectionRowReverse] = YGEdgeRight,
|
|
};
|
|
static const YGEdge trailing[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeBottom,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeTop,
|
|
[YGFlexDirectionRow] = YGEdgeRight,
|
|
[YGFlexDirectionRowReverse] = YGEdgeLeft,
|
|
};
|
|
static const YGEdge pos[4] = {
|
|
[YGFlexDirectionColumn] = YGEdgeTop,
|
|
[YGFlexDirectionColumnReverse] = YGEdgeBottom,
|
|
[YGFlexDirectionRow] = YGEdgeLeft,
|
|
[YGFlexDirectionRowReverse] = YGEdgeRight,
|
|
};
|
|
static const YGDimension dim[4] = {
|
|
[YGFlexDirectionColumn] = YGDimensionHeight,
|
|
[YGFlexDirectionColumnReverse] = YGDimensionHeight,
|
|
[YGFlexDirectionRow] = YGDimensionWidth,
|
|
[YGFlexDirectionRowReverse] = YGDimensionWidth,
|
|
};
|
|
|
|
static inline bool YGFlexDirectionIsRow(const YGFlexDirection flexDirection) {
|
|
return flexDirection == YGFlexDirectionRow || flexDirection == YGFlexDirectionRowReverse;
|
|
}
|
|
|
|
static inline bool YGFlexDirectionIsColumn(const YGFlexDirection flexDirection) {
|
|
return flexDirection == YGFlexDirectionColumn || flexDirection == YGFlexDirectionColumnReverse;
|
|
}
|
|
|
|
static inline float YGNodeLeadingMargin(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.margin[YGEdgeStart].unit != YGUnitUndefined) {
|
|
return YGResolveValueMargin(&node->style.margin[YGEdgeStart], widthSize);
|
|
}
|
|
|
|
return YGResolveValueMargin(YGComputedEdgeValue(node->style.margin, leading[axis], &YGValueZero),
|
|
widthSize);
|
|
}
|
|
|
|
static float YGNodeTrailingMargin(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.margin[YGEdgeEnd].unit != YGUnitUndefined) {
|
|
return YGResolveValueMargin(&node->style.margin[YGEdgeEnd], widthSize);
|
|
}
|
|
|
|
return YGResolveValueMargin(YGComputedEdgeValue(node->style.margin, trailing[axis], &YGValueZero),
|
|
widthSize);
|
|
}
|
|
|
|
static float YGNodeLeadingPadding(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.padding[YGEdgeStart].unit != YGUnitUndefined &&
|
|
YGResolveValue(&node->style.padding[YGEdgeStart], widthSize) >= 0.0f) {
|
|
return YGResolveValue(&node->style.padding[YGEdgeStart], widthSize);
|
|
}
|
|
|
|
return fmaxf(YGResolveValue(YGComputedEdgeValue(node->style.padding, leading[axis], &YGValueZero),
|
|
widthSize),
|
|
0.0f);
|
|
}
|
|
|
|
static float YGNodeTrailingPadding(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.padding[YGEdgeEnd].unit != YGUnitUndefined &&
|
|
YGResolveValue(&node->style.padding[YGEdgeEnd], widthSize) >= 0.0f) {
|
|
return YGResolveValue(&node->style.padding[YGEdgeEnd], widthSize);
|
|
}
|
|
|
|
return fmaxf(YGResolveValue(YGComputedEdgeValue(node->style.padding, trailing[axis], &YGValueZero),
|
|
widthSize),
|
|
0.0f);
|
|
}
|
|
|
|
static float YGNodeLeadingBorder(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.border[YGEdgeStart].unit != YGUnitUndefined &&
|
|
node->style.border[YGEdgeStart].value >= 0.0f) {
|
|
return node->style.border[YGEdgeStart].value;
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.border, leading[axis], &YGValueZero)->value, 0.0f);
|
|
}
|
|
|
|
static float YGNodeTrailingBorder(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.border[YGEdgeEnd].unit != YGUnitUndefined &&
|
|
node->style.border[YGEdgeEnd].value >= 0.0f) {
|
|
return node->style.border[YGEdgeEnd].value;
|
|
}
|
|
|
|
return fmaxf(YGComputedEdgeValue(node->style.border, trailing[axis], &YGValueZero)->value, 0.0f);
|
|
}
|
|
|
|
static inline float YGNodeLeadingPaddingAndBorder(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
return YGNodeLeadingPadding(node, axis, widthSize) + YGNodeLeadingBorder(node, axis);
|
|
}
|
|
|
|
static inline float YGNodeTrailingPaddingAndBorder(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
return YGNodeTrailingPadding(node, axis, widthSize) + YGNodeTrailingBorder(node, axis);
|
|
}
|
|
|
|
static inline float YGNodeMarginForAxis(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
return YGNodeLeadingMargin(node, axis, widthSize) + YGNodeTrailingMargin(node, axis, widthSize);
|
|
}
|
|
|
|
static inline float YGNodePaddingAndBorderForAxis(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
return YGNodeLeadingPaddingAndBorder(node, axis, widthSize) +
|
|
YGNodeTrailingPaddingAndBorder(node, axis, widthSize);
|
|
}
|
|
|
|
static inline YGAlign YGNodeAlignItem(const YGNodeRef node, const YGNodeRef child) {
|
|
const YGAlign align =
|
|
child->style.alignSelf == YGAlignAuto ? node->style.alignItems : child->style.alignSelf;
|
|
if (align == YGAlignBaseline && YGFlexDirectionIsColumn(node->style.flexDirection)) {
|
|
return YGAlignFlexStart;
|
|
}
|
|
return align;
|
|
}
|
|
|
|
static inline YGDirection YGNodeResolveDirection(const YGNodeRef node,
|
|
const YGDirection parentDirection) {
|
|
if (node->style.direction == YGDirectionInherit) {
|
|
return parentDirection > YGDirectionInherit ? parentDirection : YGDirectionLTR;
|
|
} else {
|
|
return node->style.direction;
|
|
}
|
|
}
|
|
|
|
static float YGBaseline(const YGNodeRef node) {
|
|
if (node->baseline != nullptr) {
|
|
const float baseline = node->baseline(node,
|
|
node->layout.measuredDimensions[YGDimensionWidth],
|
|
node->layout.measuredDimensions[YGDimensionHeight]);
|
|
YGAssertWithNode(node,
|
|
!YGFloatIsUndefined(baseline),
|
|
"Expect custom baseline function to not return NaN");
|
|
return baseline;
|
|
}
|
|
|
|
YGNodeRef baselineChild = nullptr;
|
|
const uint32_t childCount = YGNodeGetChildCount(node);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
if (child->lineIndex > 0) {
|
|
break;
|
|
}
|
|
if (child->style.positionType == YGPositionTypeAbsolute) {
|
|
continue;
|
|
}
|
|
if (YGNodeAlignItem(node, child) == YGAlignBaseline) {
|
|
baselineChild = child;
|
|
break;
|
|
}
|
|
|
|
if (baselineChild == nullptr) {
|
|
baselineChild = child;
|
|
}
|
|
}
|
|
|
|
if (baselineChild == nullptr) {
|
|
return node->layout.measuredDimensions[YGDimensionHeight];
|
|
}
|
|
|
|
const float baseline = YGBaseline(baselineChild);
|
|
return baseline + baselineChild->layout.position[YGEdgeTop];
|
|
}
|
|
|
|
static inline YGFlexDirection YGResolveFlexDirection(const YGFlexDirection flexDirection,
|
|
const YGDirection direction) {
|
|
if (direction == YGDirectionRTL) {
|
|
if (flexDirection == YGFlexDirectionRow) {
|
|
return YGFlexDirectionRowReverse;
|
|
} else if (flexDirection == YGFlexDirectionRowReverse) {
|
|
return YGFlexDirectionRow;
|
|
}
|
|
}
|
|
|
|
return flexDirection;
|
|
}
|
|
|
|
static YGFlexDirection YGFlexDirectionCross(const YGFlexDirection flexDirection,
|
|
const YGDirection direction) {
|
|
return YGFlexDirectionIsColumn(flexDirection)
|
|
? YGResolveFlexDirection(YGFlexDirectionRow, direction)
|
|
: YGFlexDirectionColumn;
|
|
}
|
|
|
|
static inline bool YGNodeIsFlex(const YGNodeRef node) {
|
|
return (node->style.positionType == YGPositionTypeRelative &&
|
|
(YGResolveFlexGrow(node) != 0 || YGNodeResolveFlexShrink(node) != 0));
|
|
}
|
|
|
|
static bool YGIsBaselineLayout(const YGNodeRef node) {
|
|
if (YGFlexDirectionIsColumn(node->style.flexDirection)) {
|
|
return false;
|
|
}
|
|
if (node->style.alignItems == YGAlignBaseline) {
|
|
return true;
|
|
}
|
|
const uint32_t childCount = YGNodeGetChildCount(node);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
if (child->style.positionType == YGPositionTypeRelative &&
|
|
child->style.alignSelf == YGAlignBaseline) {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static inline float YGNodeDimWithMargin(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float widthSize) {
|
|
return node->layout.measuredDimensions[dim[axis]] + YGNodeLeadingMargin(node, axis, widthSize) +
|
|
YGNodeTrailingMargin(node, axis, widthSize);
|
|
}
|
|
|
|
static inline bool YGNodeIsStyleDimDefined(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float parentSize) {
|
|
return !(node->resolvedDimensions[dim[axis]]->unit == YGUnitAuto ||
|
|
node->resolvedDimensions[dim[axis]]->unit == YGUnitUndefined ||
|
|
(node->resolvedDimensions[dim[axis]]->unit == YGUnitPoint &&
|
|
node->resolvedDimensions[dim[axis]]->value < 0.0f) ||
|
|
(node->resolvedDimensions[dim[axis]]->unit == YGUnitPercent &&
|
|
(node->resolvedDimensions[dim[axis]]->value < 0.0f || YGFloatIsUndefined(parentSize))));
|
|
}
|
|
|
|
static inline bool YGNodeIsLayoutDimDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
const float value = node->layout.measuredDimensions[dim[axis]];
|
|
return !YGFloatIsUndefined(value) && value >= 0.0f;
|
|
}
|
|
|
|
static inline bool YGNodeIsLeadingPosDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return (YGFlexDirectionIsRow(axis) &&
|
|
YGComputedEdgeValue(node->style.position, YGEdgeStart, &YGValueUndefined)->unit !=
|
|
YGUnitUndefined) ||
|
|
YGComputedEdgeValue(node->style.position, leading[axis], &YGValueUndefined)->unit !=
|
|
YGUnitUndefined;
|
|
}
|
|
|
|
static inline bool YGNodeIsTrailingPosDefined(const YGNodeRef node, const YGFlexDirection axis) {
|
|
return (YGFlexDirectionIsRow(axis) &&
|
|
YGComputedEdgeValue(node->style.position, YGEdgeEnd, &YGValueUndefined)->unit !=
|
|
YGUnitUndefined) ||
|
|
YGComputedEdgeValue(node->style.position, trailing[axis], &YGValueUndefined)->unit !=
|
|
YGUnitUndefined;
|
|
}
|
|
|
|
static float YGNodeLeadingPosition(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float axisSize) {
|
|
if (YGFlexDirectionIsRow(axis)) {
|
|
const YGValue *leadingPosition =
|
|
YGComputedEdgeValue(node->style.position, YGEdgeStart, &YGValueUndefined);
|
|
if (leadingPosition->unit != YGUnitUndefined) {
|
|
return YGResolveValue(leadingPosition, axisSize);
|
|
}
|
|
}
|
|
|
|
const YGValue *leadingPosition =
|
|
YGComputedEdgeValue(node->style.position, leading[axis], &YGValueUndefined);
|
|
|
|
return leadingPosition->unit == YGUnitUndefined ? 0.0f
|
|
: YGResolveValue(leadingPosition, axisSize);
|
|
}
|
|
|
|
static float YGNodeTrailingPosition(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float axisSize) {
|
|
if (YGFlexDirectionIsRow(axis)) {
|
|
const YGValue *trailingPosition =
|
|
YGComputedEdgeValue(node->style.position, YGEdgeEnd, &YGValueUndefined);
|
|
if (trailingPosition->unit != YGUnitUndefined) {
|
|
return YGResolveValue(trailingPosition, axisSize);
|
|
}
|
|
}
|
|
|
|
const YGValue *trailingPosition =
|
|
YGComputedEdgeValue(node->style.position, trailing[axis], &YGValueUndefined);
|
|
|
|
return trailingPosition->unit == YGUnitUndefined ? 0.0f
|
|
: YGResolveValue(trailingPosition, axisSize);
|
|
}
|
|
|
|
static float YGNodeBoundAxisWithinMinAndMax(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float value,
|
|
const float axisSize) {
|
|
float min = YGUndefined;
|
|
float max = YGUndefined;
|
|
|
|
if (YGFlexDirectionIsColumn(axis)) {
|
|
min = YGResolveValue(&node->style.minDimensions[YGDimensionHeight], axisSize);
|
|
max = YGResolveValue(&node->style.maxDimensions[YGDimensionHeight], axisSize);
|
|
} else if (YGFlexDirectionIsRow(axis)) {
|
|
min = YGResolveValue(&node->style.minDimensions[YGDimensionWidth], axisSize);
|
|
max = YGResolveValue(&node->style.maxDimensions[YGDimensionWidth], axisSize);
|
|
}
|
|
|
|
float boundValue = value;
|
|
|
|
if (!YGFloatIsUndefined(max) && max >= 0.0f && boundValue > max) {
|
|
boundValue = max;
|
|
}
|
|
|
|
if (!YGFloatIsUndefined(min) && min >= 0.0f && boundValue < min) {
|
|
boundValue = min;
|
|
}
|
|
|
|
return boundValue;
|
|
}
|
|
|
|
static inline YGValue *YGMarginLeadingValue(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.margin[YGEdgeStart].unit != YGUnitUndefined) {
|
|
return &node->style.margin[YGEdgeStart];
|
|
} else {
|
|
return &node->style.margin[leading[axis]];
|
|
}
|
|
}
|
|
|
|
static inline YGValue *YGMarginTrailingValue(const YGNodeRef node, const YGFlexDirection axis) {
|
|
if (YGFlexDirectionIsRow(axis) && node->style.margin[YGEdgeEnd].unit != YGUnitUndefined) {
|
|
return &node->style.margin[YGEdgeEnd];
|
|
} else {
|
|
return &node->style.margin[trailing[axis]];
|
|
}
|
|
}
|
|
|
|
// Like YGNodeBoundAxisWithinMinAndMax but also ensures that the value doesn't go
|
|
// below the
|
|
// padding and border amount.
|
|
static inline float YGNodeBoundAxis(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float value,
|
|
const float axisSize,
|
|
const float widthSize) {
|
|
return fmaxf(YGNodeBoundAxisWithinMinAndMax(node, axis, value, axisSize),
|
|
YGNodePaddingAndBorderForAxis(node, axis, widthSize));
|
|
}
|
|
|
|
static void YGNodeSetChildTrailingPosition(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const YGFlexDirection axis) {
|
|
const float size = child->layout.measuredDimensions[dim[axis]];
|
|
child->layout.position[trailing[axis]] =
|
|
node->layout.measuredDimensions[dim[axis]] - size - child->layout.position[pos[axis]];
|
|
}
|
|
|
|
// If both left and right are defined, then use left. Otherwise return
|
|
// +left or -right depending on which is defined.
|
|
static float YGNodeRelativePosition(const YGNodeRef node,
|
|
const YGFlexDirection axis,
|
|
const float axisSize) {
|
|
return YGNodeIsLeadingPosDefined(node, axis) ? YGNodeLeadingPosition(node, axis, axisSize)
|
|
: -YGNodeTrailingPosition(node, axis, axisSize);
|
|
}
|
|
|
|
static void YGConstrainMaxSizeForMode(const YGNodeRef node,
|
|
const enum YGFlexDirection axis,
|
|
const float parentAxisSize,
|
|
const float parentWidth,
|
|
YGMeasureMode *mode,
|
|
float *size) {
|
|
const float maxSize = YGResolveValue(&node->style.maxDimensions[dim[axis]], parentAxisSize) +
|
|
YGNodeMarginForAxis(node, axis, parentWidth);
|
|
switch (*mode) {
|
|
case YGMeasureModeExactly:
|
|
case YGMeasureModeAtMost:
|
|
*size = (YGFloatIsUndefined(maxSize) || *size < maxSize) ? *size : maxSize;
|
|
break;
|
|
case YGMeasureModeUndefined:
|
|
if (!YGFloatIsUndefined(maxSize)) {
|
|
*mode = YGMeasureModeAtMost;
|
|
*size = maxSize;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void YGNodeSetPosition(const YGNodeRef node,
|
|
const YGDirection direction,
|
|
const float mainSize,
|
|
const float crossSize,
|
|
const float parentWidth) {
|
|
/* Root nodes should be always layouted as LTR, so we don't return negative values. */
|
|
const YGDirection directionRespectingRoot =
|
|
node->parent != nullptr ? direction : YGDirectionLTR;
|
|
const YGFlexDirection mainAxis =
|
|
YGResolveFlexDirection(node->style.flexDirection, directionRespectingRoot);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, directionRespectingRoot);
|
|
|
|
const float relativePositionMain = YGNodeRelativePosition(node, mainAxis, mainSize);
|
|
const float relativePositionCross = YGNodeRelativePosition(node, crossAxis, crossSize);
|
|
|
|
node->layout.position[leading[mainAxis]] =
|
|
YGNodeLeadingMargin(node, mainAxis, parentWidth) + relativePositionMain;
|
|
node->layout.position[trailing[mainAxis]] =
|
|
YGNodeTrailingMargin(node, mainAxis, parentWidth) + relativePositionMain;
|
|
node->layout.position[leading[crossAxis]] =
|
|
YGNodeLeadingMargin(node, crossAxis, parentWidth) + relativePositionCross;
|
|
node->layout.position[trailing[crossAxis]] =
|
|
YGNodeTrailingMargin(node, crossAxis, parentWidth) + relativePositionCross;
|
|
}
|
|
|
|
static void YGNodeComputeFlexBasisForChild(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const float width,
|
|
const YGMeasureMode widthMode,
|
|
const float height,
|
|
const float parentWidth,
|
|
const float parentHeight,
|
|
const YGMeasureMode heightMode,
|
|
const YGDirection direction,
|
|
const YGConfigRef config) {
|
|
const YGFlexDirection mainAxis = YGResolveFlexDirection(node->style.flexDirection, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
const float mainAxisSize = isMainAxisRow ? width : height;
|
|
const float mainAxisParentSize = isMainAxisRow ? parentWidth : parentHeight;
|
|
|
|
float childWidth;
|
|
float childHeight;
|
|
YGMeasureMode childWidthMeasureMode;
|
|
YGMeasureMode childHeightMeasureMode;
|
|
|
|
const float resolvedFlexBasis =
|
|
YGResolveValue(YGNodeResolveFlexBasisPtr(child), mainAxisParentSize);
|
|
const bool isRowStyleDimDefined = YGNodeIsStyleDimDefined(child, YGFlexDirectionRow, parentWidth);
|
|
const bool isColumnStyleDimDefined =
|
|
YGNodeIsStyleDimDefined(child, YGFlexDirectionColumn, parentHeight);
|
|
|
|
if (!YGFloatIsUndefined(resolvedFlexBasis) && !YGFloatIsUndefined(mainAxisSize)) {
|
|
if (YGFloatIsUndefined(child->layout.computedFlexBasis) ||
|
|
(YGConfigIsExperimentalFeatureEnabled(child->config, YGExperimentalFeatureWebFlexBasis) &&
|
|
child->layout.computedFlexBasisGeneration != gCurrentGenerationCount)) {
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(resolvedFlexBasis, YGNodePaddingAndBorderForAxis(child, mainAxis, parentWidth));
|
|
}
|
|
} else if (isMainAxisRow && isRowStyleDimDefined) {
|
|
// The width is definite, so use that as the flex basis.
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(YGResolveValue(child->resolvedDimensions[YGDimensionWidth], parentWidth),
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionRow, parentWidth));
|
|
} else if (!isMainAxisRow && isColumnStyleDimDefined) {
|
|
// The height is definite, so use that as the flex basis.
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(YGResolveValue(child->resolvedDimensions[YGDimensionHeight], parentHeight),
|
|
YGNodePaddingAndBorderForAxis(child, YGFlexDirectionColumn, parentWidth));
|
|
} else {
|
|
// Compute the flex basis and hypothetical main size (i.e. the clamped
|
|
// flex basis).
|
|
childWidth = YGUndefined;
|
|
childHeight = YGUndefined;
|
|
childWidthMeasureMode = YGMeasureModeUndefined;
|
|
childHeightMeasureMode = YGMeasureModeUndefined;
|
|
|
|
const float marginRow = YGNodeMarginForAxis(child, YGFlexDirectionRow, parentWidth);
|
|
const float marginColumn = YGNodeMarginForAxis(child, YGFlexDirectionColumn, parentWidth);
|
|
|
|
if (isRowStyleDimDefined) {
|
|
childWidth =
|
|
YGResolveValue(child->resolvedDimensions[YGDimensionWidth], parentWidth) + marginRow;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
if (isColumnStyleDimDefined) {
|
|
childHeight =
|
|
YGResolveValue(child->resolvedDimensions[YGDimensionHeight], parentHeight) + marginColumn;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
|
|
// The W3C spec doesn't say anything about the 'overflow' property,
|
|
// but all major browsers appear to implement the following logic.
|
|
if ((!isMainAxisRow && node->style.overflow == YGOverflowScroll) ||
|
|
node->style.overflow != YGOverflowScroll) {
|
|
if (YGFloatIsUndefined(childWidth) && !YGFloatIsUndefined(width)) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
}
|
|
|
|
if ((isMainAxisRow && node->style.overflow == YGOverflowScroll) ||
|
|
node->style.overflow != YGOverflowScroll) {
|
|
if (YGFloatIsUndefined(childHeight) && !YGFloatIsUndefined(height)) {
|
|
childHeight = height;
|
|
childHeightMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
}
|
|
|
|
if (!YGFloatIsUndefined(child->style.aspectRatio)) {
|
|
if (!isMainAxisRow && childWidthMeasureMode == YGMeasureModeExactly) {
|
|
childHeight = (childWidth - marginRow) / child->style.aspectRatio;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
} else if (isMainAxisRow && childHeightMeasureMode == YGMeasureModeExactly) {
|
|
childWidth = (childHeight - marginColumn) * child->style.aspectRatio;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
}
|
|
|
|
// If child has no defined size in the cross axis and is set to stretch,
|
|
// set the cross
|
|
// axis to be measured exactly with the available inner width
|
|
|
|
const bool hasExactWidth = !YGFloatIsUndefined(width) && widthMode == YGMeasureModeExactly;
|
|
const bool childWidthStretch = YGNodeAlignItem(node, child) == YGAlignStretch &&
|
|
childWidthMeasureMode != YGMeasureModeExactly;
|
|
if (!isMainAxisRow && !isRowStyleDimDefined && hasExactWidth && childWidthStretch) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
if (!YGFloatIsUndefined(child->style.aspectRatio)) {
|
|
childHeight = (childWidth - marginRow) / child->style.aspectRatio;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
}
|
|
|
|
const bool hasExactHeight = !YGFloatIsUndefined(height) && heightMode == YGMeasureModeExactly;
|
|
const bool childHeightStretch = YGNodeAlignItem(node, child) == YGAlignStretch &&
|
|
childHeightMeasureMode != YGMeasureModeExactly;
|
|
if (isMainAxisRow && !isColumnStyleDimDefined && hasExactHeight && childHeightStretch) {
|
|
childHeight = height;
|
|
childHeightMeasureMode = YGMeasureModeExactly;
|
|
|
|
if (!YGFloatIsUndefined(child->style.aspectRatio)) {
|
|
childWidth = (childHeight - marginColumn) * child->style.aspectRatio;
|
|
childWidthMeasureMode = YGMeasureModeExactly;
|
|
}
|
|
}
|
|
|
|
YGConstrainMaxSizeForMode(
|
|
child, YGFlexDirectionRow, parentWidth, parentWidth, &childWidthMeasureMode, &childWidth);
|
|
YGConstrainMaxSizeForMode(child,
|
|
YGFlexDirectionColumn,
|
|
parentHeight,
|
|
parentWidth,
|
|
&childHeightMeasureMode,
|
|
&childHeight);
|
|
|
|
// Measure the child
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
parentWidth,
|
|
parentHeight,
|
|
false,
|
|
"measure",
|
|
config);
|
|
|
|
child->layout.computedFlexBasis =
|
|
fmaxf(child->layout.measuredDimensions[dim[mainAxis]],
|
|
YGNodePaddingAndBorderForAxis(child, mainAxis, parentWidth));
|
|
}
|
|
|
|
child->layout.computedFlexBasisGeneration = gCurrentGenerationCount;
|
|
}
|
|
|
|
static void YGNodeAbsoluteLayoutChild(const YGNodeRef node,
|
|
const YGNodeRef child,
|
|
const float width,
|
|
const YGMeasureMode widthMode,
|
|
const float height,
|
|
const YGDirection direction,
|
|
const YGConfigRef config) {
|
|
const YGFlexDirection mainAxis = YGResolveFlexDirection(node->style.flexDirection, direction);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
|
|
float childWidth = YGUndefined;
|
|
float childHeight = YGUndefined;
|
|
YGMeasureMode childWidthMeasureMode = YGMeasureModeUndefined;
|
|
YGMeasureMode childHeightMeasureMode = YGMeasureModeUndefined;
|
|
|
|
const float marginRow = YGNodeMarginForAxis(child, YGFlexDirectionRow, width);
|
|
const float marginColumn = YGNodeMarginForAxis(child, YGFlexDirectionColumn, width);
|
|
|
|
if (YGNodeIsStyleDimDefined(child, YGFlexDirectionRow, width)) {
|
|
childWidth = YGResolveValue(child->resolvedDimensions[YGDimensionWidth], width) + marginRow;
|
|
} else {
|
|
// If the child doesn't have a specified width, compute the width based
|
|
// on the left/right
|
|
// offsets if they're defined.
|
|
if (YGNodeIsLeadingPosDefined(child, YGFlexDirectionRow) &&
|
|
YGNodeIsTrailingPosDefined(child, YGFlexDirectionRow)) {
|
|
childWidth = node->layout.measuredDimensions[YGDimensionWidth] -
|
|
(YGNodeLeadingBorder(node, YGFlexDirectionRow) +
|
|
YGNodeTrailingBorder(node, YGFlexDirectionRow)) -
|
|
(YGNodeLeadingPosition(child, YGFlexDirectionRow, width) +
|
|
YGNodeTrailingPosition(child, YGFlexDirectionRow, width));
|
|
childWidth = YGNodeBoundAxis(child, YGFlexDirectionRow, childWidth, width, width);
|
|
}
|
|
}
|
|
|
|
if (YGNodeIsStyleDimDefined(child, YGFlexDirectionColumn, height)) {
|
|
childHeight =
|
|
YGResolveValue(child->resolvedDimensions[YGDimensionHeight], height) + marginColumn;
|
|
} else {
|
|
// If the child doesn't have a specified height, compute the height
|
|
// based on the top/bottom
|
|
// offsets if they're defined.
|
|
if (YGNodeIsLeadingPosDefined(child, YGFlexDirectionColumn) &&
|
|
YGNodeIsTrailingPosDefined(child, YGFlexDirectionColumn)) {
|
|
childHeight = node->layout.measuredDimensions[YGDimensionHeight] -
|
|
(YGNodeLeadingBorder(node, YGFlexDirectionColumn) +
|
|
YGNodeTrailingBorder(node, YGFlexDirectionColumn)) -
|
|
(YGNodeLeadingPosition(child, YGFlexDirectionColumn, height) +
|
|
YGNodeTrailingPosition(child, YGFlexDirectionColumn, height));
|
|
childHeight = YGNodeBoundAxis(child, YGFlexDirectionColumn, childHeight, height, width);
|
|
}
|
|
}
|
|
|
|
// Exactly one dimension needs to be defined for us to be able to do aspect ratio
|
|
// calculation. One dimension being the anchor and the other being flexible.
|
|
if (YGFloatIsUndefined(childWidth) ^ YGFloatIsUndefined(childHeight)) {
|
|
if (!YGFloatIsUndefined(child->style.aspectRatio)) {
|
|
if (YGFloatIsUndefined(childWidth)) {
|
|
childWidth = marginRow + (childHeight - marginColumn) * child->style.aspectRatio;
|
|
} else if (YGFloatIsUndefined(childHeight)) {
|
|
childHeight = marginColumn + (childWidth - marginRow) / child->style.aspectRatio;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we're still missing one or the other dimension, measure the content.
|
|
if (YGFloatIsUndefined(childWidth) || YGFloatIsUndefined(childHeight)) {
|
|
childWidthMeasureMode =
|
|
YGFloatIsUndefined(childWidth) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
childHeightMeasureMode =
|
|
YGFloatIsUndefined(childHeight) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
|
|
// If the size of the parent is defined then try to constrain the absolute child to that size
|
|
// as well. This allows text within the absolute child to wrap to the size of its parent.
|
|
// This is the same behavior as many browsers implement.
|
|
if (!isMainAxisRow && YGFloatIsUndefined(childWidth) && widthMode != YGMeasureModeUndefined &&
|
|
width > 0) {
|
|
childWidth = width;
|
|
childWidthMeasureMode = YGMeasureModeAtMost;
|
|
}
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
childWidth,
|
|
childHeight,
|
|
false,
|
|
"abs-measure",
|
|
config);
|
|
childWidth = child->layout.measuredDimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionRow, width);
|
|
childHeight = child->layout.measuredDimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn, width);
|
|
}
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
YGMeasureModeExactly,
|
|
YGMeasureModeExactly,
|
|
childWidth,
|
|
childHeight,
|
|
true,
|
|
"abs-layout",
|
|
config);
|
|
|
|
if (YGNodeIsTrailingPosDefined(child, mainAxis) && !YGNodeIsLeadingPosDefined(child, mainAxis)) {
|
|
child->layout.position[leading[mainAxis]] =
|
|
node->layout.measuredDimensions[dim[mainAxis]] -
|
|
child->layout.measuredDimensions[dim[mainAxis]] - YGNodeTrailingBorder(node, mainAxis) -
|
|
YGNodeTrailingMargin(child, mainAxis, width) -
|
|
YGNodeTrailingPosition(child, mainAxis, isMainAxisRow ? width : height);
|
|
} else if (!YGNodeIsLeadingPosDefined(child, mainAxis) &&
|
|
node->style.justifyContent == YGJustifyCenter) {
|
|
child->layout.position[leading[mainAxis]] = (node->layout.measuredDimensions[dim[mainAxis]] -
|
|
child->layout.measuredDimensions[dim[mainAxis]]) /
|
|
2.0f;
|
|
} else if (!YGNodeIsLeadingPosDefined(child, mainAxis) &&
|
|
node->style.justifyContent == YGJustifyFlexEnd) {
|
|
child->layout.position[leading[mainAxis]] = (node->layout.measuredDimensions[dim[mainAxis]] -
|
|
child->layout.measuredDimensions[dim[mainAxis]]);
|
|
}
|
|
|
|
if (YGNodeIsTrailingPosDefined(child, crossAxis) &&
|
|
!YGNodeIsLeadingPosDefined(child, crossAxis)) {
|
|
child->layout.position[leading[crossAxis]] =
|
|
node->layout.measuredDimensions[dim[crossAxis]] -
|
|
child->layout.measuredDimensions[dim[crossAxis]] - YGNodeTrailingBorder(node, crossAxis) -
|
|
YGNodeTrailingMargin(child, crossAxis, width) -
|
|
YGNodeTrailingPosition(child, crossAxis, isMainAxisRow ? height : width);
|
|
} else if (!YGNodeIsLeadingPosDefined(child, crossAxis) &&
|
|
YGNodeAlignItem(node, child) == YGAlignCenter) {
|
|
child->layout.position[leading[crossAxis]] =
|
|
(node->layout.measuredDimensions[dim[crossAxis]] -
|
|
child->layout.measuredDimensions[dim[crossAxis]]) /
|
|
2.0f;
|
|
} else if (!YGNodeIsLeadingPosDefined(child, crossAxis) &&
|
|
((YGNodeAlignItem(node, child) == YGAlignFlexEnd) ^
|
|
(node->style.flexWrap == YGWrapWrapReverse))) {
|
|
child->layout.position[leading[crossAxis]] = (node->layout.measuredDimensions[dim[crossAxis]] -
|
|
child->layout.measuredDimensions[dim[crossAxis]]);
|
|
}
|
|
}
|
|
|
|
static void YGNodeWithMeasureFuncSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight) {
|
|
YGAssertWithNode(
|
|
node,
|
|
node->measure != nullptr,
|
|
"Expected node to have custom measure function");
|
|
|
|
const float paddingAndBorderAxisRow =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionRow, availableWidth);
|
|
const float paddingAndBorderAxisColumn =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionColumn, availableWidth);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow, availableWidth);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn, availableWidth);
|
|
|
|
// We want to make sure we don't call measure with negative size
|
|
const float innerWidth = YGFloatIsUndefined(availableWidth)
|
|
? availableWidth
|
|
: fmaxf(0, availableWidth - marginAxisRow - paddingAndBorderAxisRow);
|
|
const float innerHeight =
|
|
YGFloatIsUndefined(availableHeight)
|
|
? availableHeight
|
|
: fmaxf(0, availableHeight - marginAxisColumn - paddingAndBorderAxisColumn);
|
|
|
|
if (widthMeasureMode == YGMeasureModeExactly && heightMeasureMode == YGMeasureModeExactly) {
|
|
// Don't bother sizing the text if both dimensions are already defined.
|
|
node->layout.measuredDimensions[YGDimensionWidth] = YGNodeBoundAxis(
|
|
node, YGFlexDirectionRow, availableWidth - marginAxisRow, parentWidth, parentWidth);
|
|
node->layout.measuredDimensions[YGDimensionHeight] = YGNodeBoundAxis(
|
|
node, YGFlexDirectionColumn, availableHeight - marginAxisColumn, parentHeight, parentWidth);
|
|
} else {
|
|
// Measure the text under the current constraints.
|
|
const YGSize measuredSize =
|
|
node->measure(node, innerWidth, widthMeasureMode, innerHeight, heightMeasureMode);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
(widthMeasureMode == YGMeasureModeUndefined ||
|
|
widthMeasureMode == YGMeasureModeAtMost)
|
|
? measuredSize.width + paddingAndBorderAxisRow
|
|
: availableWidth - marginAxisRow,
|
|
availableWidth,
|
|
availableWidth);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
(heightMeasureMode == YGMeasureModeUndefined ||
|
|
heightMeasureMode == YGMeasureModeAtMost)
|
|
? measuredSize.height + paddingAndBorderAxisColumn
|
|
: availableHeight - marginAxisColumn,
|
|
availableHeight,
|
|
availableWidth);
|
|
}
|
|
}
|
|
|
|
// For nodes with no children, use the available values if they were provided,
|
|
// or the minimum size as indicated by the padding and border sizes.
|
|
static void YGNodeEmptyContainerSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight) {
|
|
const float paddingAndBorderAxisRow =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
const float paddingAndBorderAxisColumn =
|
|
YGNodePaddingAndBorderForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
(widthMeasureMode == YGMeasureModeUndefined ||
|
|
widthMeasureMode == YGMeasureModeAtMost)
|
|
? paddingAndBorderAxisRow
|
|
: availableWidth - marginAxisRow,
|
|
parentWidth,
|
|
parentWidth);
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
(heightMeasureMode == YGMeasureModeUndefined ||
|
|
heightMeasureMode == YGMeasureModeAtMost)
|
|
? paddingAndBorderAxisColumn
|
|
: availableHeight - marginAxisColumn,
|
|
parentHeight,
|
|
parentWidth);
|
|
}
|
|
|
|
static bool YGNodeFixedSizeSetMeasuredDimensions(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight) {
|
|
if ((widthMeasureMode == YGMeasureModeAtMost && availableWidth <= 0.0f) ||
|
|
(heightMeasureMode == YGMeasureModeAtMost && availableHeight <= 0.0f) ||
|
|
(widthMeasureMode == YGMeasureModeExactly && heightMeasureMode == YGMeasureModeExactly)) {
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
|
|
node->layout.measuredDimensions[YGDimensionWidth] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionRow,
|
|
YGFloatIsUndefined(availableWidth) ||
|
|
(widthMeasureMode == YGMeasureModeAtMost && availableWidth < 0.0f)
|
|
? 0.0f
|
|
: availableWidth - marginAxisRow,
|
|
parentWidth,
|
|
parentWidth);
|
|
|
|
node->layout.measuredDimensions[YGDimensionHeight] =
|
|
YGNodeBoundAxis(node,
|
|
YGFlexDirectionColumn,
|
|
YGFloatIsUndefined(availableHeight) ||
|
|
(heightMeasureMode == YGMeasureModeAtMost && availableHeight < 0.0f)
|
|
? 0.0f
|
|
: availableHeight - marginAxisColumn,
|
|
parentHeight,
|
|
parentWidth);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void YGZeroOutLayoutRecursivly(const YGNodeRef node) {
|
|
memset(&(node->layout), 0, sizeof(YGLayout));
|
|
node->hasNewLayout = true;
|
|
YGCloneChildrenIfNeeded(node);
|
|
const uint32_t childCount = YGNodeGetChildCount(node);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
YGZeroOutLayoutRecursivly(child);
|
|
}
|
|
}
|
|
|
|
//
|
|
// This is the main routine that implements a subset of the flexbox layout
|
|
// algorithm
|
|
// described in the W3C YG documentation: https://www.w3.org/TR/YG3-flexbox/.
|
|
//
|
|
// Limitations of this algorithm, compared to the full standard:
|
|
// * Display property is always assumed to be 'flex' except for Text nodes,
|
|
// which
|
|
// are assumed to be 'inline-flex'.
|
|
// * The 'zIndex' property (or any form of z ordering) is not supported. Nodes
|
|
// are
|
|
// stacked in document order.
|
|
// * The 'order' property is not supported. The order of flex items is always
|
|
// defined
|
|
// by document order.
|
|
// * The 'visibility' property is always assumed to be 'visible'. Values of
|
|
// 'collapse'
|
|
// and 'hidden' are not supported.
|
|
// * There is no support for forced breaks.
|
|
// * It does not support vertical inline directions (top-to-bottom or
|
|
// bottom-to-top text).
|
|
//
|
|
// Deviations from standard:
|
|
// * Section 4.5 of the spec indicates that all flex items have a default
|
|
// minimum
|
|
// main size. For text blocks, for example, this is the width of the widest
|
|
// word.
|
|
// Calculating the minimum width is expensive, so we forego it and assume a
|
|
// default
|
|
// minimum main size of 0.
|
|
// * Min/Max sizes in the main axis are not honored when resolving flexible
|
|
// lengths.
|
|
// * The spec indicates that the default value for 'flexDirection' is 'row',
|
|
// but
|
|
// the algorithm below assumes a default of 'column'.
|
|
//
|
|
// Input parameters:
|
|
// - node: current node to be sized and layed out
|
|
// - availableWidth & availableHeight: available size to be used for sizing
|
|
// the node
|
|
// or YGUndefined if the size is not available; interpretation depends on
|
|
// layout
|
|
// flags
|
|
// - parentDirection: the inline (text) direction within the parent
|
|
// (left-to-right or
|
|
// right-to-left)
|
|
// - widthMeasureMode: indicates the sizing rules for the width (see below
|
|
// for explanation)
|
|
// - heightMeasureMode: indicates the sizing rules for the height (see below
|
|
// for explanation)
|
|
// - performLayout: specifies whether the caller is interested in just the
|
|
// dimensions
|
|
// of the node or it requires the entire node and its subtree to be layed
|
|
// out
|
|
// (with final positions)
|
|
//
|
|
// Details:
|
|
// This routine is called recursively to lay out subtrees of flexbox
|
|
// elements. It uses the
|
|
// information in node.style, which is treated as a read-only input. It is
|
|
// responsible for
|
|
// setting the layout.direction and layout.measuredDimensions fields for the
|
|
// input node as well
|
|
// as the layout.position and layout.lineIndex fields for its child nodes.
|
|
// The
|
|
// layout.measuredDimensions field includes any border or padding for the
|
|
// node but does
|
|
// not include margins.
|
|
//
|
|
// The spec describes four different layout modes: "fill available", "max
|
|
// content", "min
|
|
// content",
|
|
// and "fit content". Of these, we don't use "min content" because we don't
|
|
// support default
|
|
// minimum main sizes (see above for details). Each of our measure modes maps
|
|
// to a layout mode
|
|
// from the spec (https://www.w3.org/TR/YG3-sizing/#terms):
|
|
// - YGMeasureModeUndefined: max content
|
|
// - YGMeasureModeExactly: fill available
|
|
// - YGMeasureModeAtMost: fit content
|
|
//
|
|
// When calling YGNodelayoutImpl and YGLayoutNodeInternal, if the caller passes
|
|
// an available size of
|
|
// undefined then it must also pass a measure mode of YGMeasureModeUndefined
|
|
// in that dimension.
|
|
//
|
|
static void YGNodelayoutImpl(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight,
|
|
const bool performLayout,
|
|
const YGConfigRef config) {
|
|
YGAssertWithNode(node,
|
|
YGFloatIsUndefined(availableWidth) ? widthMeasureMode == YGMeasureModeUndefined
|
|
: true,
|
|
"availableWidth is indefinite so widthMeasureMode must be "
|
|
"YGMeasureModeUndefined");
|
|
YGAssertWithNode(node,
|
|
YGFloatIsUndefined(availableHeight) ? heightMeasureMode == YGMeasureModeUndefined
|
|
: true,
|
|
"availableHeight is indefinite so heightMeasureMode must be "
|
|
"YGMeasureModeUndefined");
|
|
|
|
// Set the resolved resolution in the node's layout.
|
|
const YGDirection direction = YGNodeResolveDirection(node, parentDirection);
|
|
node->layout.direction = direction;
|
|
|
|
const YGFlexDirection flexRowDirection = YGResolveFlexDirection(YGFlexDirectionRow, direction);
|
|
const YGFlexDirection flexColumnDirection =
|
|
YGResolveFlexDirection(YGFlexDirectionColumn, direction);
|
|
|
|
node->layout.margin[YGEdgeStart] = YGNodeLeadingMargin(node, flexRowDirection, parentWidth);
|
|
node->layout.margin[YGEdgeEnd] = YGNodeTrailingMargin(node, flexRowDirection, parentWidth);
|
|
node->layout.margin[YGEdgeTop] = YGNodeLeadingMargin(node, flexColumnDirection, parentWidth);
|
|
node->layout.margin[YGEdgeBottom] = YGNodeTrailingMargin(node, flexColumnDirection, parentWidth);
|
|
|
|
node->layout.border[YGEdgeStart] = YGNodeLeadingBorder(node, flexRowDirection);
|
|
node->layout.border[YGEdgeEnd] = YGNodeTrailingBorder(node, flexRowDirection);
|
|
node->layout.border[YGEdgeTop] = YGNodeLeadingBorder(node, flexColumnDirection);
|
|
node->layout.border[YGEdgeBottom] = YGNodeTrailingBorder(node, flexColumnDirection);
|
|
|
|
node->layout.padding[YGEdgeStart] = YGNodeLeadingPadding(node, flexRowDirection, parentWidth);
|
|
node->layout.padding[YGEdgeEnd] = YGNodeTrailingPadding(node, flexRowDirection, parentWidth);
|
|
node->layout.padding[YGEdgeTop] = YGNodeLeadingPadding(node, flexColumnDirection, parentWidth);
|
|
node->layout.padding[YGEdgeBottom] =
|
|
YGNodeTrailingPadding(node, flexColumnDirection, parentWidth);
|
|
|
|
if (node->measure) {
|
|
YGNodeWithMeasureFuncSetMeasuredDimensions(node,
|
|
availableWidth,
|
|
availableHeight,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
parentWidth,
|
|
parentHeight);
|
|
return;
|
|
}
|
|
|
|
const uint32_t childCount = YGNodeListCount(node->children);
|
|
if (childCount == 0) {
|
|
YGNodeEmptyContainerSetMeasuredDimensions(node,
|
|
availableWidth,
|
|
availableHeight,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
parentWidth,
|
|
parentHeight);
|
|
return;
|
|
}
|
|
|
|
// If we're not being asked to perform a full layout we can skip the algorithm if we already know
|
|
// the size
|
|
if (!performLayout && YGNodeFixedSizeSetMeasuredDimensions(node,
|
|
availableWidth,
|
|
availableHeight,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
parentWidth,
|
|
parentHeight)) {
|
|
return;
|
|
}
|
|
|
|
// At this point we know we're going to perform work. Ensure that each child has a mutable copy.
|
|
YGCloneChildrenIfNeeded(node);
|
|
|
|
// Reset layout flags, as they could have changed.
|
|
node->layout.hadOverflow = false;
|
|
|
|
// STEP 1: CALCULATE VALUES FOR REMAINDER OF ALGORITHM
|
|
const YGFlexDirection mainAxis = YGResolveFlexDirection(node->style.flexDirection, direction);
|
|
const YGFlexDirection crossAxis = YGFlexDirectionCross(mainAxis, direction);
|
|
const bool isMainAxisRow = YGFlexDirectionIsRow(mainAxis);
|
|
const YGJustify justifyContent = node->style.justifyContent;
|
|
const bool isNodeFlexWrap = node->style.flexWrap != YGWrapNoWrap;
|
|
|
|
const float mainAxisParentSize = isMainAxisRow ? parentWidth : parentHeight;
|
|
const float crossAxisParentSize = isMainAxisRow ? parentHeight : parentWidth;
|
|
|
|
YGNodeRef firstAbsoluteChild = nullptr;
|
|
YGNodeRef currentAbsoluteChild = nullptr;
|
|
|
|
const float leadingPaddingAndBorderMain =
|
|
YGNodeLeadingPaddingAndBorder(node, mainAxis, parentWidth);
|
|
const float trailingPaddingAndBorderMain =
|
|
YGNodeTrailingPaddingAndBorder(node, mainAxis, parentWidth);
|
|
const float leadingPaddingAndBorderCross =
|
|
YGNodeLeadingPaddingAndBorder(node, crossAxis, parentWidth);
|
|
const float paddingAndBorderAxisMain = YGNodePaddingAndBorderForAxis(node, mainAxis, parentWidth);
|
|
const float paddingAndBorderAxisCross =
|
|
YGNodePaddingAndBorderForAxis(node, crossAxis, parentWidth);
|
|
|
|
YGMeasureMode measureModeMainDim = isMainAxisRow ? widthMeasureMode : heightMeasureMode;
|
|
YGMeasureMode measureModeCrossDim = isMainAxisRow ? heightMeasureMode : widthMeasureMode;
|
|
|
|
const float paddingAndBorderAxisRow =
|
|
isMainAxisRow ? paddingAndBorderAxisMain : paddingAndBorderAxisCross;
|
|
const float paddingAndBorderAxisColumn =
|
|
isMainAxisRow ? paddingAndBorderAxisCross : paddingAndBorderAxisMain;
|
|
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
|
|
// STEP 2: DETERMINE AVAILABLE SIZE IN MAIN AND CROSS DIRECTIONS
|
|
const float minInnerWidth =
|
|
YGResolveValue(&node->style.minDimensions[YGDimensionWidth], parentWidth) -
|
|
paddingAndBorderAxisRow;
|
|
const float maxInnerWidth =
|
|
YGResolveValue(&node->style.maxDimensions[YGDimensionWidth], parentWidth) -
|
|
paddingAndBorderAxisRow;
|
|
const float minInnerHeight =
|
|
YGResolveValue(&node->style.minDimensions[YGDimensionHeight], parentHeight) -
|
|
paddingAndBorderAxisColumn;
|
|
const float maxInnerHeight =
|
|
YGResolveValue(&node->style.maxDimensions[YGDimensionHeight], parentHeight) -
|
|
paddingAndBorderAxisColumn;
|
|
const float minInnerMainDim = isMainAxisRow ? minInnerWidth : minInnerHeight;
|
|
const float maxInnerMainDim = isMainAxisRow ? maxInnerWidth : maxInnerHeight;
|
|
|
|
// Max dimension overrides predefined dimension value; Min dimension in turn overrides both of the
|
|
// above
|
|
float availableInnerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
|
|
if (!YGFloatIsUndefined(availableInnerWidth)) {
|
|
// We want to make sure our available width does not violate min and max constraints
|
|
availableInnerWidth = fmaxf(fminf(availableInnerWidth, maxInnerWidth), minInnerWidth);
|
|
}
|
|
|
|
float availableInnerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
|
|
if (!YGFloatIsUndefined(availableInnerHeight)) {
|
|
// We want to make sure our available height does not violate min and max constraints
|
|
availableInnerHeight = fmaxf(fminf(availableInnerHeight, maxInnerHeight), minInnerHeight);
|
|
}
|
|
|
|
float availableInnerMainDim = isMainAxisRow ? availableInnerWidth : availableInnerHeight;
|
|
const float availableInnerCrossDim = isMainAxisRow ? availableInnerHeight : availableInnerWidth;
|
|
|
|
// If there is only one child with flexGrow + flexShrink it means we can set the
|
|
// computedFlexBasis to 0 instead of measuring and shrinking / flexing the child to exactly
|
|
// match the remaining space
|
|
YGNodeRef singleFlexChild = nullptr;
|
|
if (measureModeMainDim == YGMeasureModeExactly) {
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
if (singleFlexChild) {
|
|
if (YGNodeIsFlex(child)) {
|
|
// There is already a flexible child, abort.
|
|
singleFlexChild = nullptr;
|
|
break;
|
|
}
|
|
} else if (YGResolveFlexGrow(child) > 0.0f && YGNodeResolveFlexShrink(child) > 0.0f) {
|
|
singleFlexChild = child;
|
|
}
|
|
}
|
|
}
|
|
|
|
float totalOuterFlexBasis = 0;
|
|
|
|
// STEP 3: DETERMINE FLEX BASIS FOR EACH ITEM
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.display == YGDisplayNone) {
|
|
YGZeroOutLayoutRecursivly(child);
|
|
child->hasNewLayout = true;
|
|
child->isDirty = false;
|
|
continue;
|
|
}
|
|
YGResolveDimensions(child);
|
|
if (performLayout) {
|
|
// Set the initial position (relative to the parent).
|
|
const YGDirection childDirection = YGNodeResolveDirection(child, direction);
|
|
YGNodeSetPosition(child,
|
|
childDirection,
|
|
availableInnerMainDim,
|
|
availableInnerCrossDim,
|
|
availableInnerWidth);
|
|
}
|
|
|
|
// Absolute-positioned children don't participate in flex layout. Add them
|
|
// to a list that we can process later.
|
|
if (child->style.positionType == YGPositionTypeAbsolute) {
|
|
// Store a private linked list of absolutely positioned children
|
|
// so that we can efficiently traverse them later.
|
|
if (firstAbsoluteChild == nullptr) {
|
|
firstAbsoluteChild = child;
|
|
}
|
|
if (currentAbsoluteChild != nullptr) {
|
|
currentAbsoluteChild->nextChild = child;
|
|
}
|
|
currentAbsoluteChild = child;
|
|
child->nextChild = nullptr;
|
|
} else {
|
|
if (child == singleFlexChild) {
|
|
child->layout.computedFlexBasisGeneration = gCurrentGenerationCount;
|
|
child->layout.computedFlexBasis = 0;
|
|
} else {
|
|
YGNodeComputeFlexBasisForChild(node,
|
|
child,
|
|
availableInnerWidth,
|
|
widthMeasureMode,
|
|
availableInnerHeight,
|
|
availableInnerWidth,
|
|
availableInnerHeight,
|
|
heightMeasureMode,
|
|
direction,
|
|
config);
|
|
}
|
|
}
|
|
|
|
totalOuterFlexBasis +=
|
|
child->layout.computedFlexBasis + YGNodeMarginForAxis(child, mainAxis, availableInnerWidth);
|
|
;
|
|
}
|
|
|
|
const bool flexBasisOverflows = measureModeMainDim == YGMeasureModeUndefined
|
|
? false
|
|
: totalOuterFlexBasis > availableInnerMainDim;
|
|
if (isNodeFlexWrap && flexBasisOverflows && measureModeMainDim == YGMeasureModeAtMost) {
|
|
measureModeMainDim = YGMeasureModeExactly;
|
|
}
|
|
|
|
// STEP 4: COLLECT FLEX ITEMS INTO FLEX LINES
|
|
|
|
// Indexes of children that represent the first and last items in the line.
|
|
uint32_t startOfLineIndex = 0;
|
|
uint32_t endOfLineIndex = 0;
|
|
|
|
// Number of lines.
|
|
uint32_t lineCount = 0;
|
|
|
|
// Accumulated cross dimensions of all lines so far.
|
|
float totalLineCrossDim = 0;
|
|
|
|
// Max main dimension of all the lines.
|
|
float maxLineMainDim = 0;
|
|
|
|
for (; endOfLineIndex < childCount; lineCount++, startOfLineIndex = endOfLineIndex) {
|
|
// Number of items on the currently line. May be different than the
|
|
// difference
|
|
// between start and end indicates because we skip over absolute-positioned
|
|
// items.
|
|
uint32_t itemsOnLine = 0;
|
|
|
|
// sizeConsumedOnCurrentLine is accumulation of the dimensions and margin
|
|
// of all the children on the current line. This will be used in order to
|
|
// either set the dimensions of the node if none already exist or to compute
|
|
// the remaining space left for the flexible children.
|
|
float sizeConsumedOnCurrentLine = 0;
|
|
float sizeConsumedOnCurrentLineIncludingMinConstraint = 0;
|
|
|
|
float totalFlexGrowFactors = 0;
|
|
float totalFlexShrinkScaledFactors = 0;
|
|
|
|
// Maintain a linked list of the child nodes that can shrink and/or grow.
|
|
YGNodeRef firstRelativeChild = nullptr;
|
|
YGNodeRef currentRelativeChild = nullptr;
|
|
|
|
// Add items to the current line until it's full or we run out of items.
|
|
for (uint32_t i = startOfLineIndex; i < childCount; i++, endOfLineIndex++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
child->lineIndex = lineCount;
|
|
|
|
if (child->style.positionType != YGPositionTypeAbsolute) {
|
|
const float childMarginMainAxis = YGNodeMarginForAxis(child, mainAxis, availableInnerWidth);
|
|
const float flexBasisWithMaxConstraints =
|
|
fminf(YGResolveValue(&child->style.maxDimensions[dim[mainAxis]], mainAxisParentSize),
|
|
child->layout.computedFlexBasis);
|
|
const float flexBasisWithMinAndMaxConstraints =
|
|
fmaxf(YGResolveValue(&child->style.minDimensions[dim[mainAxis]], mainAxisParentSize),
|
|
flexBasisWithMaxConstraints);
|
|
|
|
// If this is a multi-line flow and this item pushes us over the
|
|
// available size, we've
|
|
// hit the end of the current line. Break out of the loop and lay out
|
|
// the current line.
|
|
if (sizeConsumedOnCurrentLineIncludingMinConstraint + flexBasisWithMinAndMaxConstraints +
|
|
childMarginMainAxis >
|
|
availableInnerMainDim &&
|
|
isNodeFlexWrap && itemsOnLine > 0) {
|
|
break;
|
|
}
|
|
|
|
sizeConsumedOnCurrentLineIncludingMinConstraint +=
|
|
flexBasisWithMinAndMaxConstraints + childMarginMainAxis;
|
|
sizeConsumedOnCurrentLine += flexBasisWithMinAndMaxConstraints + childMarginMainAxis;
|
|
itemsOnLine++;
|
|
|
|
if (YGNodeIsFlex(child)) {
|
|
totalFlexGrowFactors += YGResolveFlexGrow(child);
|
|
|
|
// Unlike the grow factor, the shrink factor is scaled relative to the child dimension.
|
|
totalFlexShrinkScaledFactors +=
|
|
-YGNodeResolveFlexShrink(child) * child->layout.computedFlexBasis;
|
|
}
|
|
|
|
// Store a private linked list of children that need to be layed out.
|
|
if (firstRelativeChild == nullptr) {
|
|
firstRelativeChild = child;
|
|
}
|
|
if (currentRelativeChild != nullptr) {
|
|
currentRelativeChild->nextChild = child;
|
|
}
|
|
currentRelativeChild = child;
|
|
child->nextChild = nullptr;
|
|
}
|
|
}
|
|
|
|
// The total flex factor needs to be floored to 1.
|
|
if (totalFlexGrowFactors > 0 && totalFlexGrowFactors < 1) {
|
|
totalFlexGrowFactors = 1;
|
|
}
|
|
|
|
// The total flex shrink factor needs to be floored to 1.
|
|
if (totalFlexShrinkScaledFactors > 0 && totalFlexShrinkScaledFactors < 1) {
|
|
totalFlexShrinkScaledFactors = 1;
|
|
}
|
|
|
|
// If we don't need to measure the cross axis, we can skip the entire flex
|
|
// step.
|
|
const bool canSkipFlex = !performLayout && measureModeCrossDim == YGMeasureModeExactly;
|
|
|
|
// In order to position the elements in the main axis, we have two
|
|
// controls. The space between the beginning and the first element
|
|
// and the space between each two elements.
|
|
float leadingMainDim = 0;
|
|
float betweenMainDim = 0;
|
|
|
|
// STEP 5: RESOLVING FLEXIBLE LENGTHS ON MAIN AXIS
|
|
// Calculate the remaining available space that needs to be allocated.
|
|
// If the main dimension size isn't known, it is computed based on
|
|
// the line length, so there's no more space left to distribute.
|
|
|
|
bool sizeBasedOnContent = false;
|
|
// If we don't measure with exact main dimension we want to ensure we don't violate min and max
|
|
if (measureModeMainDim != YGMeasureModeExactly) {
|
|
if (!YGFloatIsUndefined(minInnerMainDim) && sizeConsumedOnCurrentLine < minInnerMainDim) {
|
|
availableInnerMainDim = minInnerMainDim;
|
|
} else if (!YGFloatIsUndefined(maxInnerMainDim) &&
|
|
sizeConsumedOnCurrentLine > maxInnerMainDim) {
|
|
availableInnerMainDim = maxInnerMainDim;
|
|
} else {
|
|
if (!node->config->useLegacyStretchBehaviour &&
|
|
(totalFlexGrowFactors == 0 || YGResolveFlexGrow(node) == 0)) {
|
|
// If we don't have any children to flex or we can't flex the node itself,
|
|
// space we've used is all space we need. Root node also should be shrunk to minimum
|
|
availableInnerMainDim = sizeConsumedOnCurrentLine;
|
|
}
|
|
sizeBasedOnContent = !node->config->useLegacyStretchBehaviour;
|
|
}
|
|
}
|
|
|
|
float remainingFreeSpace = 0;
|
|
if (!sizeBasedOnContent && !YGFloatIsUndefined(availableInnerMainDim)) {
|
|
remainingFreeSpace = availableInnerMainDim - sizeConsumedOnCurrentLine;
|
|
} else if (sizeConsumedOnCurrentLine < 0) {
|
|
// availableInnerMainDim is indefinite which means the node is being sized based on its
|
|
// content.
|
|
// sizeConsumedOnCurrentLine is negative which means the node will allocate 0 points for
|
|
// its content. Consequently, remainingFreeSpace is 0 - sizeConsumedOnCurrentLine.
|
|
remainingFreeSpace = -sizeConsumedOnCurrentLine;
|
|
}
|
|
|
|
const float originalRemainingFreeSpace = remainingFreeSpace;
|
|
float deltaFreeSpace = 0;
|
|
|
|
if (!canSkipFlex) {
|
|
float childFlexBasis;
|
|
float flexShrinkScaledFactor;
|
|
float flexGrowFactor;
|
|
float baseMainSize;
|
|
float boundMainSize;
|
|
|
|
// Do two passes over the flex items to figure out how to distribute the
|
|
// remaining space.
|
|
// The first pass finds the items whose min/max constraints trigger,
|
|
// freezes them at those
|
|
// sizes, and excludes those sizes from the remaining space. The second
|
|
// pass sets the size
|
|
// of each flexible item. It distributes the remaining space amongst the
|
|
// items whose min/max
|
|
// constraints didn't trigger in pass 1. For the other items, it sets
|
|
// their sizes by forcing
|
|
// their min/max constraints to trigger again.
|
|
//
|
|
// This two pass approach for resolving min/max constraints deviates from
|
|
// the spec. The
|
|
// spec (https://www.w3.org/TR/YG-flexbox-1/#resolve-flexible-lengths)
|
|
// describes a process
|
|
// that needs to be repeated a variable number of times. The algorithm
|
|
// implemented here
|
|
// won't handle all cases but it was simpler to implement and it mitigates
|
|
// performance
|
|
// concerns because we know exactly how many passes it'll do.
|
|
|
|
// First pass: detect the flex items whose min/max constraints trigger
|
|
float deltaFlexShrinkScaledFactors = 0;
|
|
float deltaFlexGrowFactors = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != nullptr) {
|
|
childFlexBasis =
|
|
fminf(YGResolveValue(¤tRelativeChild->style.maxDimensions[dim[mainAxis]],
|
|
mainAxisParentSize),
|
|
fmaxf(YGResolveValue(¤tRelativeChild->style.minDimensions[dim[mainAxis]],
|
|
mainAxisParentSize),
|
|
currentRelativeChild->layout.computedFlexBasis));
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = -YGNodeResolveFlexShrink(currentRelativeChild) * childFlexBasis;
|
|
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
baseMainSize =
|
|
childFlexBasis +
|
|
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor;
|
|
boundMainSize = YGNodeBoundAxis(currentRelativeChild,
|
|
mainAxis,
|
|
baseMainSize,
|
|
availableInnerMainDim,
|
|
availableInnerWidth);
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining,
|
|
// this item's
|
|
// min/max constraints should also trigger in the second pass
|
|
// resulting in the
|
|
// item's size calculation being identical in the first and second
|
|
// passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexShrinkScaledFactors -= flexShrinkScaledFactor;
|
|
}
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = YGResolveFlexGrow(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
baseMainSize =
|
|
childFlexBasis + remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor;
|
|
boundMainSize = YGNodeBoundAxis(currentRelativeChild,
|
|
mainAxis,
|
|
baseMainSize,
|
|
availableInnerMainDim,
|
|
availableInnerWidth);
|
|
|
|
if (baseMainSize != boundMainSize) {
|
|
// By excluding this item's size and flex factor from remaining,
|
|
// this item's
|
|
// min/max constraints should also trigger in the second pass
|
|
// resulting in the
|
|
// item's size calculation being identical in the first and second
|
|
// passes.
|
|
deltaFreeSpace -= boundMainSize - childFlexBasis;
|
|
deltaFlexGrowFactors -= flexGrowFactor;
|
|
}
|
|
}
|
|
}
|
|
|
|
currentRelativeChild = currentRelativeChild->nextChild;
|
|
}
|
|
|
|
totalFlexShrinkScaledFactors += deltaFlexShrinkScaledFactors;
|
|
totalFlexGrowFactors += deltaFlexGrowFactors;
|
|
remainingFreeSpace += deltaFreeSpace;
|
|
|
|
// Second pass: resolve the sizes of the flexible items
|
|
deltaFreeSpace = 0;
|
|
currentRelativeChild = firstRelativeChild;
|
|
while (currentRelativeChild != nullptr) {
|
|
childFlexBasis =
|
|
fminf(YGResolveValue(¤tRelativeChild->style.maxDimensions[dim[mainAxis]],
|
|
mainAxisParentSize),
|
|
fmaxf(YGResolveValue(¤tRelativeChild->style.minDimensions[dim[mainAxis]],
|
|
mainAxisParentSize),
|
|
currentRelativeChild->layout.computedFlexBasis));
|
|
float updatedMainSize = childFlexBasis;
|
|
|
|
if (remainingFreeSpace < 0) {
|
|
flexShrinkScaledFactor = -YGNodeResolveFlexShrink(currentRelativeChild) * childFlexBasis;
|
|
// Is this child able to shrink?
|
|
if (flexShrinkScaledFactor != 0) {
|
|
float childSize;
|
|
|
|
if (totalFlexShrinkScaledFactors == 0) {
|
|
childSize = childFlexBasis + flexShrinkScaledFactor;
|
|
} else {
|
|
childSize =
|
|
childFlexBasis +
|
|
(remainingFreeSpace / totalFlexShrinkScaledFactors) * flexShrinkScaledFactor;
|
|
}
|
|
|
|
updatedMainSize = YGNodeBoundAxis(currentRelativeChild,
|
|
mainAxis,
|
|
childSize,
|
|
availableInnerMainDim,
|
|
availableInnerWidth);
|
|
}
|
|
} else if (remainingFreeSpace > 0) {
|
|
flexGrowFactor = YGResolveFlexGrow(currentRelativeChild);
|
|
|
|
// Is this child able to grow?
|
|
if (flexGrowFactor != 0) {
|
|
updatedMainSize =
|
|
YGNodeBoundAxis(currentRelativeChild,
|
|
mainAxis,
|
|
childFlexBasis +
|
|
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor,
|
|
availableInnerMainDim,
|
|
availableInnerWidth);
|
|
}
|
|
}
|
|
|
|
deltaFreeSpace -= updatedMainSize - childFlexBasis;
|
|
|
|
const float marginMain =
|
|
YGNodeMarginForAxis(currentRelativeChild, mainAxis, availableInnerWidth);
|
|
const float marginCross =
|
|
YGNodeMarginForAxis(currentRelativeChild, crossAxis, availableInnerWidth);
|
|
|
|
float childCrossSize;
|
|
float childMainSize = updatedMainSize + marginMain;
|
|
YGMeasureMode childCrossMeasureMode;
|
|
YGMeasureMode childMainMeasureMode = YGMeasureModeExactly;
|
|
|
|
if (!YGFloatIsUndefined(currentRelativeChild->style.aspectRatio)) {
|
|
childCrossSize =
|
|
isMainAxisRow
|
|
? (childMainSize - marginMain) / currentRelativeChild->style.aspectRatio
|
|
: (childMainSize - marginMain) * currentRelativeChild->style.aspectRatio;
|
|
childCrossMeasureMode = YGMeasureModeExactly;
|
|
|
|
childCrossSize += marginCross;
|
|
} else if (!YGFloatIsUndefined(availableInnerCrossDim) &&
|
|
!YGNodeIsStyleDimDefined(currentRelativeChild,
|
|
crossAxis,
|
|
availableInnerCrossDim) &&
|
|
measureModeCrossDim == YGMeasureModeExactly &&
|
|
!(isNodeFlexWrap && flexBasisOverflows) &&
|
|
YGNodeAlignItem(node, currentRelativeChild) == YGAlignStretch) {
|
|
childCrossSize = availableInnerCrossDim;
|
|
childCrossMeasureMode = YGMeasureModeExactly;
|
|
} else if (!YGNodeIsStyleDimDefined(currentRelativeChild,
|
|
crossAxis,
|
|
availableInnerCrossDim)) {
|
|
childCrossSize = availableInnerCrossDim;
|
|
childCrossMeasureMode =
|
|
YGFloatIsUndefined(childCrossSize) ? YGMeasureModeUndefined : YGMeasureModeAtMost;
|
|
} else {
|
|
childCrossSize = YGResolveValue(currentRelativeChild->resolvedDimensions[dim[crossAxis]],
|
|
availableInnerCrossDim) +
|
|
marginCross;
|
|
const bool isLoosePercentageMeasurement =
|
|
currentRelativeChild->resolvedDimensions[dim[crossAxis]]->unit == YGUnitPercent &&
|
|
measureModeCrossDim != YGMeasureModeExactly;
|
|
childCrossMeasureMode = YGFloatIsUndefined(childCrossSize) || isLoosePercentageMeasurement
|
|
? YGMeasureModeUndefined
|
|
: YGMeasureModeExactly;
|
|
}
|
|
|
|
YGConstrainMaxSizeForMode(currentRelativeChild,
|
|
mainAxis,
|
|
availableInnerMainDim,
|
|
availableInnerWidth,
|
|
&childMainMeasureMode,
|
|
&childMainSize);
|
|
YGConstrainMaxSizeForMode(currentRelativeChild,
|
|
crossAxis,
|
|
availableInnerCrossDim,
|
|
availableInnerWidth,
|
|
&childCrossMeasureMode,
|
|
&childCrossSize);
|
|
|
|
const bool requiresStretchLayout =
|
|
!YGNodeIsStyleDimDefined(currentRelativeChild, crossAxis, availableInnerCrossDim) &&
|
|
YGNodeAlignItem(node, currentRelativeChild) == YGAlignStretch;
|
|
|
|
const float childWidth = isMainAxisRow ? childMainSize : childCrossSize;
|
|
const float childHeight = !isMainAxisRow ? childMainSize : childCrossSize;
|
|
|
|
const YGMeasureMode childWidthMeasureMode =
|
|
isMainAxisRow ? childMainMeasureMode : childCrossMeasureMode;
|
|
const YGMeasureMode childHeightMeasureMode =
|
|
!isMainAxisRow ? childMainMeasureMode : childCrossMeasureMode;
|
|
|
|
// Recursively call the layout algorithm for this child with the updated
|
|
// main size.
|
|
YGLayoutNodeInternal(currentRelativeChild,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
availableInnerWidth,
|
|
availableInnerHeight,
|
|
performLayout && !requiresStretchLayout,
|
|
"flex",
|
|
config);
|
|
node->layout.hadOverflow |= currentRelativeChild->layout.hadOverflow;
|
|
|
|
currentRelativeChild = currentRelativeChild->nextChild;
|
|
}
|
|
}
|
|
|
|
remainingFreeSpace = originalRemainingFreeSpace + deltaFreeSpace;
|
|
node->layout.hadOverflow |= (remainingFreeSpace < 0);
|
|
|
|
// STEP 6: MAIN-AXIS JUSTIFICATION & CROSS-AXIS SIZE DETERMINATION
|
|
|
|
// At this point, all the children have their dimensions set in the main
|
|
// axis.
|
|
// Their dimensions are also set in the cross axis with the exception of
|
|
// items
|
|
// that are aligned "stretch". We need to compute these stretch values and
|
|
// set the final positions.
|
|
|
|
// If we are using "at most" rules in the main axis. Calculate the remaining space when
|
|
// constraint by the min size defined for the main axis.
|
|
|
|
if (measureModeMainDim == YGMeasureModeAtMost && remainingFreeSpace > 0) {
|
|
if (node->style.minDimensions[dim[mainAxis]].unit != YGUnitUndefined &&
|
|
YGResolveValue(&node->style.minDimensions[dim[mainAxis]], mainAxisParentSize) >= 0) {
|
|
remainingFreeSpace =
|
|
fmaxf(0,
|
|
YGResolveValue(&node->style.minDimensions[dim[mainAxis]], mainAxisParentSize) -
|
|
(availableInnerMainDim - remainingFreeSpace));
|
|
} else {
|
|
remainingFreeSpace = 0;
|
|
}
|
|
}
|
|
|
|
int numberOfAutoMarginsOnCurrentLine = 0;
|
|
for (uint32_t i = startOfLineIndex; i < endOfLineIndex; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
if (YGMarginLeadingValue(child, mainAxis)->unit == YGUnitAuto) {
|
|
numberOfAutoMarginsOnCurrentLine++;
|
|
}
|
|
if (YGMarginTrailingValue(child, mainAxis)->unit == YGUnitAuto) {
|
|
numberOfAutoMarginsOnCurrentLine++;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (numberOfAutoMarginsOnCurrentLine == 0) {
|
|
switch (justifyContent) {
|
|
case YGJustifyCenter:
|
|
leadingMainDim = remainingFreeSpace / 2;
|
|
break;
|
|
case YGJustifyFlexEnd:
|
|
leadingMainDim = remainingFreeSpace;
|
|
break;
|
|
case YGJustifySpaceBetween:
|
|
if (itemsOnLine > 1) {
|
|
betweenMainDim = fmaxf(remainingFreeSpace, 0) / (itemsOnLine - 1);
|
|
} else {
|
|
betweenMainDim = 0;
|
|
}
|
|
break;
|
|
case YGJustifySpaceEvenly:
|
|
// Space is distributed evenly across all elements
|
|
betweenMainDim = remainingFreeSpace / (itemsOnLine + 1);
|
|
leadingMainDim = betweenMainDim;
|
|
break;
|
|
case YGJustifySpaceAround:
|
|
// Space on the edges is half of the space between elements
|
|
betweenMainDim = remainingFreeSpace / itemsOnLine;
|
|
leadingMainDim = betweenMainDim / 2;
|
|
break;
|
|
case YGJustifyFlexStart:
|
|
break;
|
|
}
|
|
}
|
|
|
|
float mainDim = leadingPaddingAndBorderMain + leadingMainDim;
|
|
float crossDim = 0;
|
|
|
|
for (uint32_t i = startOfLineIndex; i < endOfLineIndex; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
if (child->style.positionType == YGPositionTypeAbsolute &&
|
|
YGNodeIsLeadingPosDefined(child, mainAxis)) {
|
|
if (performLayout) {
|
|
// In case the child is position absolute and has left/top being
|
|
// defined, we override the position to whatever the user said
|
|
// (and margin/border).
|
|
child->layout.position[pos[mainAxis]] =
|
|
YGNodeLeadingPosition(child, mainAxis, availableInnerMainDim) +
|
|
YGNodeLeadingBorder(node, mainAxis) +
|
|
YGNodeLeadingMargin(child, mainAxis, availableInnerWidth);
|
|
}
|
|
} else {
|
|
// Now that we placed the element, we need to update the variables.
|
|
// We need to do that only for relative elements. Absolute elements
|
|
// do not take part in that phase.
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
if (YGMarginLeadingValue(child, mainAxis)->unit == YGUnitAuto) {
|
|
mainDim += remainingFreeSpace / numberOfAutoMarginsOnCurrentLine;
|
|
}
|
|
|
|
if (performLayout) {
|
|
child->layout.position[pos[mainAxis]] += mainDim;
|
|
}
|
|
|
|
if (YGMarginTrailingValue(child, mainAxis)->unit == YGUnitAuto) {
|
|
mainDim += remainingFreeSpace / numberOfAutoMarginsOnCurrentLine;
|
|
}
|
|
|
|
if (canSkipFlex) {
|
|
// If we skipped the flex step, then we can't rely on the
|
|
// measuredDims because
|
|
// they weren't computed. This means we can't call YGNodeDimWithMargin.
|
|
mainDim += betweenMainDim + YGNodeMarginForAxis(child, mainAxis, availableInnerWidth) +
|
|
child->layout.computedFlexBasis;
|
|
crossDim = availableInnerCrossDim;
|
|
} else {
|
|
// The main dimension is the sum of all the elements dimension plus the spacing.
|
|
mainDim += betweenMainDim + YGNodeDimWithMargin(child, mainAxis, availableInnerWidth);
|
|
|
|
// The cross dimension is the max of the elements dimension since
|
|
// there can only be one element in that cross dimension.
|
|
crossDim = fmaxf(crossDim, YGNodeDimWithMargin(child, crossAxis, availableInnerWidth));
|
|
}
|
|
} else if (performLayout) {
|
|
child->layout.position[pos[mainAxis]] +=
|
|
YGNodeLeadingBorder(node, mainAxis) + leadingMainDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
mainDim += trailingPaddingAndBorderMain;
|
|
|
|
float containerCrossAxis = availableInnerCrossDim;
|
|
if (measureModeCrossDim == YGMeasureModeUndefined ||
|
|
measureModeCrossDim == YGMeasureModeAtMost) {
|
|
// Compute the cross axis from the max cross dimension of the children.
|
|
containerCrossAxis = YGNodeBoundAxis(node,
|
|
crossAxis,
|
|
crossDim + paddingAndBorderAxisCross,
|
|
crossAxisParentSize,
|
|
parentWidth) -
|
|
paddingAndBorderAxisCross;
|
|
}
|
|
|
|
// If there's no flex wrap, the cross dimension is defined by the container.
|
|
if (!isNodeFlexWrap && measureModeCrossDim == YGMeasureModeExactly) {
|
|
crossDim = availableInnerCrossDim;
|
|
}
|
|
|
|
// Clamp to the min/max size specified on the container.
|
|
crossDim = YGNodeBoundAxis(node,
|
|
crossAxis,
|
|
crossDim + paddingAndBorderAxisCross,
|
|
crossAxisParentSize,
|
|
parentWidth) -
|
|
paddingAndBorderAxisCross;
|
|
|
|
// STEP 7: CROSS-AXIS ALIGNMENT
|
|
// We can skip child alignment if we're just measuring the container.
|
|
if (performLayout) {
|
|
for (uint32_t i = startOfLineIndex; i < endOfLineIndex; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
if (child->style.positionType == YGPositionTypeAbsolute) {
|
|
// If the child is absolutely positioned and has a
|
|
// top/left/bottom/right
|
|
// set, override all the previously computed positions to set it
|
|
// correctly.
|
|
const bool isChildLeadingPosDefined = YGNodeIsLeadingPosDefined(child, crossAxis);
|
|
if (isChildLeadingPosDefined) {
|
|
child->layout.position[pos[crossAxis]] =
|
|
YGNodeLeadingPosition(child, crossAxis, availableInnerCrossDim) +
|
|
YGNodeLeadingBorder(node, crossAxis) +
|
|
YGNodeLeadingMargin(child, crossAxis, availableInnerWidth);
|
|
}
|
|
// If leading position is not defined or calculations result in Nan, default to border + margin
|
|
if (!isChildLeadingPosDefined || YGFloatIsUndefined(child->layout.position[pos[crossAxis]])) {
|
|
child->layout.position[pos[crossAxis]] =
|
|
YGNodeLeadingBorder(node, crossAxis) +
|
|
YGNodeLeadingMargin(child, crossAxis, availableInnerWidth);
|
|
}
|
|
} else {
|
|
float leadingCrossDim = leadingPaddingAndBorderCross;
|
|
|
|
// For a relative children, we're either using alignItems (parent) or
|
|
// alignSelf (child) in order to determine the position in the cross
|
|
// axis
|
|
const YGAlign alignItem = YGNodeAlignItem(node, child);
|
|
|
|
// If the child uses align stretch, we need to lay it out one more
|
|
// time, this time
|
|
// forcing the cross-axis size to be the computed cross size for the
|
|
// current line.
|
|
if (alignItem == YGAlignStretch &&
|
|
YGMarginLeadingValue(child, crossAxis)->unit != YGUnitAuto &&
|
|
YGMarginTrailingValue(child, crossAxis)->unit != YGUnitAuto) {
|
|
// If the child defines a definite size for its cross axis, there's
|
|
// no need to stretch.
|
|
if (!YGNodeIsStyleDimDefined(child, crossAxis, availableInnerCrossDim)) {
|
|
float childMainSize = child->layout.measuredDimensions[dim[mainAxis]];
|
|
float childCrossSize =
|
|
!YGFloatIsUndefined(child->style.aspectRatio)
|
|
? ((YGNodeMarginForAxis(child, crossAxis, availableInnerWidth) +
|
|
(isMainAxisRow ? childMainSize / child->style.aspectRatio
|
|
: childMainSize * child->style.aspectRatio)))
|
|
: crossDim;
|
|
|
|
childMainSize += YGNodeMarginForAxis(child, mainAxis, availableInnerWidth);
|
|
|
|
YGMeasureMode childMainMeasureMode = YGMeasureModeExactly;
|
|
YGMeasureMode childCrossMeasureMode = YGMeasureModeExactly;
|
|
YGConstrainMaxSizeForMode(child,
|
|
mainAxis,
|
|
availableInnerMainDim,
|
|
availableInnerWidth,
|
|
&childMainMeasureMode,
|
|
&childMainSize);
|
|
YGConstrainMaxSizeForMode(child,
|
|
crossAxis,
|
|
availableInnerCrossDim,
|
|
availableInnerWidth,
|
|
&childCrossMeasureMode,
|
|
&childCrossSize);
|
|
|
|
const float childWidth = isMainAxisRow ? childMainSize : childCrossSize;
|
|
const float childHeight = !isMainAxisRow ? childMainSize : childCrossSize;
|
|
|
|
const YGMeasureMode childWidthMeasureMode =
|
|
YGFloatIsUndefined(childWidth) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
const YGMeasureMode childHeightMeasureMode =
|
|
YGFloatIsUndefined(childHeight) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
childWidthMeasureMode,
|
|
childHeightMeasureMode,
|
|
availableInnerWidth,
|
|
availableInnerHeight,
|
|
true,
|
|
"stretch",
|
|
config);
|
|
}
|
|
} else {
|
|
const float remainingCrossDim =
|
|
containerCrossAxis - YGNodeDimWithMargin(child, crossAxis, availableInnerWidth);
|
|
|
|
if (YGMarginLeadingValue(child, crossAxis)->unit == YGUnitAuto &&
|
|
YGMarginTrailingValue(child, crossAxis)->unit == YGUnitAuto) {
|
|
leadingCrossDim += fmaxf(0.0f, remainingCrossDim / 2);
|
|
} else if (YGMarginTrailingValue(child, crossAxis)->unit == YGUnitAuto) {
|
|
// No-Op
|
|
} else if (YGMarginLeadingValue(child, crossAxis)->unit == YGUnitAuto) {
|
|
leadingCrossDim += fmaxf(0.0f, remainingCrossDim);
|
|
} else if (alignItem == YGAlignFlexStart) {
|
|
// No-Op
|
|
} else if (alignItem == YGAlignCenter) {
|
|
leadingCrossDim += remainingCrossDim / 2;
|
|
} else {
|
|
leadingCrossDim += remainingCrossDim;
|
|
}
|
|
}
|
|
// And we apply the position
|
|
child->layout.position[pos[crossAxis]] += totalLineCrossDim + leadingCrossDim;
|
|
}
|
|
}
|
|
}
|
|
|
|
totalLineCrossDim += crossDim;
|
|
maxLineMainDim = fmaxf(maxLineMainDim, mainDim);
|
|
}
|
|
|
|
// STEP 8: MULTI-LINE CONTENT ALIGNMENT
|
|
if (performLayout && (lineCount > 1 || YGIsBaselineLayout(node)) &&
|
|
!YGFloatIsUndefined(availableInnerCrossDim)) {
|
|
const float remainingAlignContentDim = availableInnerCrossDim - totalLineCrossDim;
|
|
|
|
float crossDimLead = 0;
|
|
float currentLead = leadingPaddingAndBorderCross;
|
|
|
|
switch (node->style.alignContent) {
|
|
case YGAlignFlexEnd:
|
|
currentLead += remainingAlignContentDim;
|
|
break;
|
|
case YGAlignCenter:
|
|
currentLead += remainingAlignContentDim / 2;
|
|
break;
|
|
case YGAlignStretch:
|
|
if (availableInnerCrossDim > totalLineCrossDim) {
|
|
crossDimLead = remainingAlignContentDim / lineCount;
|
|
}
|
|
break;
|
|
case YGAlignSpaceAround:
|
|
if (availableInnerCrossDim > totalLineCrossDim) {
|
|
currentLead += remainingAlignContentDim / (2 * lineCount);
|
|
if (lineCount > 1) {
|
|
crossDimLead = remainingAlignContentDim / lineCount;
|
|
}
|
|
} else {
|
|
currentLead += remainingAlignContentDim / 2;
|
|
}
|
|
break;
|
|
case YGAlignSpaceBetween:
|
|
if (availableInnerCrossDim > totalLineCrossDim && lineCount > 1) {
|
|
crossDimLead = remainingAlignContentDim / (lineCount - 1);
|
|
}
|
|
break;
|
|
case YGAlignAuto:
|
|
case YGAlignFlexStart:
|
|
case YGAlignBaseline:
|
|
break;
|
|
}
|
|
|
|
uint32_t endIndex = 0;
|
|
for (uint32_t i = 0; i < lineCount; i++) {
|
|
const uint32_t startIndex = endIndex;
|
|
uint32_t ii;
|
|
|
|
// compute the line's height and find the endIndex
|
|
float lineHeight = 0;
|
|
float maxAscentForCurrentLine = 0;
|
|
float maxDescentForCurrentLine = 0;
|
|
for (ii = startIndex; ii < childCount; ii++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, ii);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
if (child->lineIndex != i) {
|
|
break;
|
|
}
|
|
if (YGNodeIsLayoutDimDefined(child, crossAxis)) {
|
|
lineHeight = fmaxf(lineHeight,
|
|
child->layout.measuredDimensions[dim[crossAxis]] +
|
|
YGNodeMarginForAxis(child, crossAxis, availableInnerWidth));
|
|
}
|
|
if (YGNodeAlignItem(node, child) == YGAlignBaseline) {
|
|
const float ascent =
|
|
YGBaseline(child) +
|
|
YGNodeLeadingMargin(child, YGFlexDirectionColumn, availableInnerWidth);
|
|
const float descent =
|
|
child->layout.measuredDimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, YGFlexDirectionColumn, availableInnerWidth) - ascent;
|
|
maxAscentForCurrentLine = fmaxf(maxAscentForCurrentLine, ascent);
|
|
maxDescentForCurrentLine = fmaxf(maxDescentForCurrentLine, descent);
|
|
lineHeight = fmaxf(lineHeight, maxAscentForCurrentLine + maxDescentForCurrentLine);
|
|
}
|
|
}
|
|
}
|
|
endIndex = ii;
|
|
lineHeight += crossDimLead;
|
|
|
|
if (performLayout) {
|
|
for (ii = startIndex; ii < endIndex; ii++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, ii);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
switch (YGNodeAlignItem(node, child)) {
|
|
case YGAlignFlexStart: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + YGNodeLeadingMargin(child, crossAxis, availableInnerWidth);
|
|
break;
|
|
}
|
|
case YGAlignFlexEnd: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + lineHeight -
|
|
YGNodeTrailingMargin(child, crossAxis, availableInnerWidth) -
|
|
child->layout.measuredDimensions[dim[crossAxis]];
|
|
break;
|
|
}
|
|
case YGAlignCenter: {
|
|
float childHeight = child->layout.measuredDimensions[dim[crossAxis]];
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + (lineHeight - childHeight) / 2;
|
|
break;
|
|
}
|
|
case YGAlignStretch: {
|
|
child->layout.position[pos[crossAxis]] =
|
|
currentLead + YGNodeLeadingMargin(child, crossAxis, availableInnerWidth);
|
|
|
|
// Remeasure child with the line height as it as been only measured with the
|
|
// parents height yet.
|
|
if (!YGNodeIsStyleDimDefined(child, crossAxis, availableInnerCrossDim)) {
|
|
const float childWidth =
|
|
isMainAxisRow ? (child->layout.measuredDimensions[YGDimensionWidth] +
|
|
YGNodeMarginForAxis(child, mainAxis, availableInnerWidth))
|
|
: lineHeight;
|
|
|
|
const float childHeight =
|
|
!isMainAxisRow ? (child->layout.measuredDimensions[YGDimensionHeight] +
|
|
YGNodeMarginForAxis(child, crossAxis, availableInnerWidth))
|
|
: lineHeight;
|
|
|
|
if (!(YGFloatsEqual(childWidth,
|
|
child->layout.measuredDimensions[YGDimensionWidth]) &&
|
|
YGFloatsEqual(childHeight,
|
|
child->layout.measuredDimensions[YGDimensionHeight]))) {
|
|
YGLayoutNodeInternal(child,
|
|
childWidth,
|
|
childHeight,
|
|
direction,
|
|
YGMeasureModeExactly,
|
|
YGMeasureModeExactly,
|
|
availableInnerWidth,
|
|
availableInnerHeight,
|
|
true,
|
|
"multiline-stretch",
|
|
config);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case YGAlignBaseline: {
|
|
child->layout.position[YGEdgeTop] =
|
|
currentLead + maxAscentForCurrentLine - YGBaseline(child) +
|
|
YGNodeLeadingPosition(child, YGFlexDirectionColumn, availableInnerCrossDim);
|
|
break;
|
|
}
|
|
case YGAlignAuto:
|
|
case YGAlignSpaceBetween:
|
|
case YGAlignSpaceAround:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
currentLead += lineHeight;
|
|
}
|
|
}
|
|
|
|
// STEP 9: COMPUTING FINAL DIMENSIONS
|
|
node->layout.measuredDimensions[YGDimensionWidth] = YGNodeBoundAxis(
|
|
node, YGFlexDirectionRow, availableWidth - marginAxisRow, parentWidth, parentWidth);
|
|
node->layout.measuredDimensions[YGDimensionHeight] = YGNodeBoundAxis(
|
|
node, YGFlexDirectionColumn, availableHeight - marginAxisColumn, parentHeight, parentWidth);
|
|
|
|
// If the user didn't specify a width or height for the node, set the
|
|
// dimensions based on the children.
|
|
if (measureModeMainDim == YGMeasureModeUndefined ||
|
|
(node->style.overflow != YGOverflowScroll && measureModeMainDim == YGMeasureModeAtMost)) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measuredDimensions[dim[mainAxis]] =
|
|
YGNodeBoundAxis(node, mainAxis, maxLineMainDim, mainAxisParentSize, parentWidth);
|
|
} else if (measureModeMainDim == YGMeasureModeAtMost &&
|
|
node->style.overflow == YGOverflowScroll) {
|
|
node->layout.measuredDimensions[dim[mainAxis]] = fmaxf(
|
|
fminf(availableInnerMainDim + paddingAndBorderAxisMain,
|
|
YGNodeBoundAxisWithinMinAndMax(node, mainAxis, maxLineMainDim, mainAxisParentSize)),
|
|
paddingAndBorderAxisMain);
|
|
}
|
|
|
|
if (measureModeCrossDim == YGMeasureModeUndefined ||
|
|
(node->style.overflow != YGOverflowScroll && measureModeCrossDim == YGMeasureModeAtMost)) {
|
|
// Clamp the size to the min/max size, if specified, and make sure it
|
|
// doesn't go below the padding and border amount.
|
|
node->layout.measuredDimensions[dim[crossAxis]] =
|
|
YGNodeBoundAxis(node,
|
|
crossAxis,
|
|
totalLineCrossDim + paddingAndBorderAxisCross,
|
|
crossAxisParentSize,
|
|
parentWidth);
|
|
} else if (measureModeCrossDim == YGMeasureModeAtMost &&
|
|
node->style.overflow == YGOverflowScroll) {
|
|
node->layout.measuredDimensions[dim[crossAxis]] =
|
|
fmaxf(fminf(availableInnerCrossDim + paddingAndBorderAxisCross,
|
|
YGNodeBoundAxisWithinMinAndMax(node,
|
|
crossAxis,
|
|
totalLineCrossDim + paddingAndBorderAxisCross,
|
|
crossAxisParentSize)),
|
|
paddingAndBorderAxisCross);
|
|
}
|
|
|
|
// As we only wrapped in normal direction yet, we need to reverse the positions on wrap-reverse.
|
|
if (performLayout && node->style.flexWrap == YGWrapWrapReverse) {
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeGetChild(node, i);
|
|
if (child->style.positionType == YGPositionTypeRelative) {
|
|
child->layout.position[pos[crossAxis]] = node->layout.measuredDimensions[dim[crossAxis]] -
|
|
child->layout.position[pos[crossAxis]] -
|
|
child->layout.measuredDimensions[dim[crossAxis]];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (performLayout) {
|
|
// STEP 10: SIZING AND POSITIONING ABSOLUTE CHILDREN
|
|
for (currentAbsoluteChild = firstAbsoluteChild;
|
|
currentAbsoluteChild != nullptr;
|
|
currentAbsoluteChild = currentAbsoluteChild->nextChild) {
|
|
YGNodeAbsoluteLayoutChild(node,
|
|
currentAbsoluteChild,
|
|
availableInnerWidth,
|
|
isMainAxisRow ? measureModeMainDim : measureModeCrossDim,
|
|
availableInnerHeight,
|
|
direction,
|
|
config);
|
|
}
|
|
|
|
// STEP 11: SETTING TRAILING POSITIONS FOR CHILDREN
|
|
const bool needsMainTrailingPos =
|
|
mainAxis == YGFlexDirectionRowReverse || mainAxis == YGFlexDirectionColumnReverse;
|
|
const bool needsCrossTrailingPos =
|
|
crossAxis == YGFlexDirectionRowReverse || crossAxis == YGFlexDirectionColumnReverse;
|
|
|
|
// Set trailing position if necessary.
|
|
if (needsMainTrailingPos || needsCrossTrailingPos) {
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
const YGNodeRef child = YGNodeListGet(node->children, i);
|
|
if (child->style.display == YGDisplayNone) {
|
|
continue;
|
|
}
|
|
if (needsMainTrailingPos) {
|
|
YGNodeSetChildTrailingPosition(node, child, mainAxis);
|
|
}
|
|
|
|
if (needsCrossTrailingPos) {
|
|
YGNodeSetChildTrailingPosition(node, child, crossAxis);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t gDepth = 0;
|
|
bool gPrintTree = false;
|
|
bool gPrintChanges = false;
|
|
bool gPrintSkips = false;
|
|
|
|
static const char *spacer = " ";
|
|
|
|
static const char *YGSpacer(const unsigned long level) {
|
|
const size_t spacerLen = strlen(spacer);
|
|
if (level > spacerLen) {
|
|
return &spacer[0];
|
|
} else {
|
|
return &spacer[spacerLen - level];
|
|
}
|
|
}
|
|
|
|
static const char *YGMeasureModeName(const YGMeasureMode mode, const bool performLayout) {
|
|
const char *kMeasureModeNames[YGMeasureModeCount] = {"UNDEFINED", "EXACTLY", "AT_MOST"};
|
|
const char *kLayoutModeNames[YGMeasureModeCount] = {"LAY_UNDEFINED",
|
|
"LAY_EXACTLY",
|
|
"LAY_AT_"
|
|
"MOST"};
|
|
|
|
if (mode >= YGMeasureModeCount) {
|
|
return "";
|
|
}
|
|
|
|
return performLayout ? kLayoutModeNames[mode] : kMeasureModeNames[mode];
|
|
}
|
|
|
|
static inline bool YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(YGMeasureMode sizeMode,
|
|
float size,
|
|
float lastComputedSize) {
|
|
return sizeMode == YGMeasureModeExactly && YGFloatsEqual(size, lastComputedSize);
|
|
}
|
|
|
|
static inline bool YGMeasureModeOldSizeIsUnspecifiedAndStillFits(YGMeasureMode sizeMode,
|
|
float size,
|
|
YGMeasureMode lastSizeMode,
|
|
float lastComputedSize) {
|
|
return sizeMode == YGMeasureModeAtMost && lastSizeMode == YGMeasureModeUndefined &&
|
|
(size >= lastComputedSize || YGFloatsEqual(size, lastComputedSize));
|
|
}
|
|
|
|
static inline bool YGMeasureModeNewMeasureSizeIsStricterAndStillValid(YGMeasureMode sizeMode,
|
|
float size,
|
|
YGMeasureMode lastSizeMode,
|
|
float lastSize,
|
|
float lastComputedSize) {
|
|
return lastSizeMode == YGMeasureModeAtMost && sizeMode == YGMeasureModeAtMost &&
|
|
lastSize > size && (lastComputedSize <= size || YGFloatsEqual(size, lastComputedSize));
|
|
}
|
|
|
|
float YGRoundValueToPixelGrid(const float value,
|
|
const float pointScaleFactor,
|
|
const bool forceCeil,
|
|
const bool forceFloor) {
|
|
float scaledValue = value * pointScaleFactor;
|
|
float fractial = fmodf(scaledValue, 1.0);
|
|
if (YGFloatsEqual(fractial, 0)) {
|
|
// First we check if the value is already rounded
|
|
scaledValue = scaledValue - fractial;
|
|
} else if (YGFloatsEqual(fractial, 1.0)) {
|
|
scaledValue = scaledValue - fractial + 1.0;
|
|
} else if (forceCeil) {
|
|
// Next we check if we need to use forced rounding
|
|
scaledValue = scaledValue - fractial + 1.0f;
|
|
} else if (forceFloor) {
|
|
scaledValue = scaledValue - fractial;
|
|
} else {
|
|
// Finally we just round the value
|
|
scaledValue = scaledValue - fractial +
|
|
(fractial > 0.5f || YGFloatsEqual(fractial, 0.5f) ? 1.0f : 0.0f);
|
|
}
|
|
return scaledValue / pointScaleFactor;
|
|
}
|
|
|
|
bool YGNodeCanUseCachedMeasurement(const YGMeasureMode widthMode,
|
|
const float width,
|
|
const YGMeasureMode heightMode,
|
|
const float height,
|
|
const YGMeasureMode lastWidthMode,
|
|
const float lastWidth,
|
|
const YGMeasureMode lastHeightMode,
|
|
const float lastHeight,
|
|
const float lastComputedWidth,
|
|
const float lastComputedHeight,
|
|
const float marginRow,
|
|
const float marginColumn,
|
|
const YGConfigRef config) {
|
|
if (lastComputedHeight < 0 || lastComputedWidth < 0) {
|
|
return false;
|
|
}
|
|
bool useRoundedComparison =
|
|
config != nullptr && config->pointScaleFactor != 0;
|
|
const float effectiveWidth =
|
|
useRoundedComparison ? YGRoundValueToPixelGrid(width, config->pointScaleFactor, false, false)
|
|
: width;
|
|
const float effectiveHeight =
|
|
useRoundedComparison ? YGRoundValueToPixelGrid(height, config->pointScaleFactor, false, false)
|
|
: height;
|
|
const float effectiveLastWidth =
|
|
useRoundedComparison
|
|
? YGRoundValueToPixelGrid(lastWidth, config->pointScaleFactor, false, false)
|
|
: lastWidth;
|
|
const float effectiveLastHeight =
|
|
useRoundedComparison
|
|
? YGRoundValueToPixelGrid(lastHeight, config->pointScaleFactor, false, false)
|
|
: lastHeight;
|
|
|
|
const bool hasSameWidthSpec =
|
|
lastWidthMode == widthMode && YGFloatsEqual(effectiveLastWidth, effectiveWidth);
|
|
const bool hasSameHeightSpec =
|
|
lastHeightMode == heightMode && YGFloatsEqual(effectiveLastHeight, effectiveHeight);
|
|
|
|
const bool widthIsCompatible =
|
|
hasSameWidthSpec || YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(widthMode,
|
|
width - marginRow,
|
|
lastComputedWidth) ||
|
|
YGMeasureModeOldSizeIsUnspecifiedAndStillFits(widthMode,
|
|
width - marginRow,
|
|
lastWidthMode,
|
|
lastComputedWidth) ||
|
|
YGMeasureModeNewMeasureSizeIsStricterAndStillValid(
|
|
widthMode, width - marginRow, lastWidthMode, lastWidth, lastComputedWidth);
|
|
|
|
const bool heightIsCompatible =
|
|
hasSameHeightSpec || YGMeasureModeSizeIsExactAndMatchesOldMeasuredSize(heightMode,
|
|
height - marginColumn,
|
|
lastComputedHeight) ||
|
|
YGMeasureModeOldSizeIsUnspecifiedAndStillFits(heightMode,
|
|
height - marginColumn,
|
|
lastHeightMode,
|
|
lastComputedHeight) ||
|
|
YGMeasureModeNewMeasureSizeIsStricterAndStillValid(
|
|
heightMode, height - marginColumn, lastHeightMode, lastHeight, lastComputedHeight);
|
|
|
|
return widthIsCompatible && heightIsCompatible;
|
|
}
|
|
|
|
//
|
|
// This is a wrapper around the YGNodelayoutImpl function. It determines
|
|
// whether the layout request is redundant and can be skipped.
|
|
//
|
|
// Parameters:
|
|
// Input parameters are the same as YGNodelayoutImpl (see above)
|
|
// Return parameter is true if layout was performed, false if skipped
|
|
//
|
|
bool YGLayoutNodeInternal(const YGNodeRef node,
|
|
const float availableWidth,
|
|
const float availableHeight,
|
|
const YGDirection parentDirection,
|
|
const YGMeasureMode widthMeasureMode,
|
|
const YGMeasureMode heightMeasureMode,
|
|
const float parentWidth,
|
|
const float parentHeight,
|
|
const bool performLayout,
|
|
const char *reason,
|
|
const YGConfigRef config) {
|
|
YGLayout *layout = &node->layout;
|
|
|
|
gDepth++;
|
|
|
|
const bool needToVisitNode =
|
|
(node->isDirty && layout->generationCount != gCurrentGenerationCount) ||
|
|
layout->lastParentDirection != parentDirection;
|
|
|
|
if (needToVisitNode) {
|
|
// Invalidate the cached results.
|
|
layout->nextCachedMeasurementsIndex = 0;
|
|
layout->cachedLayout.widthMeasureMode = (YGMeasureMode) -1;
|
|
layout->cachedLayout.heightMeasureMode = (YGMeasureMode) -1;
|
|
layout->cachedLayout.computedWidth = -1;
|
|
layout->cachedLayout.computedHeight = -1;
|
|
}
|
|
|
|
YGCachedMeasurement* cachedResults = nullptr;
|
|
|
|
// Determine whether the results are already cached. We maintain a separate
|
|
// cache for layouts and measurements. A layout operation modifies the
|
|
// positions
|
|
// and dimensions for nodes in the subtree. The algorithm assumes that each
|
|
// node
|
|
// gets layed out a maximum of one time per tree layout, but multiple
|
|
// measurements
|
|
// may be required to resolve all of the flex dimensions.
|
|
// We handle nodes with measure functions specially here because they are the
|
|
// most
|
|
// expensive to measure, so it's worth avoiding redundant measurements if at
|
|
// all possible.
|
|
if (node->measure) {
|
|
const float marginAxisRow = YGNodeMarginForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
const float marginAxisColumn = YGNodeMarginForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
|
|
// First, try to use the layout cache.
|
|
if (YGNodeCanUseCachedMeasurement(widthMeasureMode,
|
|
availableWidth,
|
|
heightMeasureMode,
|
|
availableHeight,
|
|
layout->cachedLayout.widthMeasureMode,
|
|
layout->cachedLayout.availableWidth,
|
|
layout->cachedLayout.heightMeasureMode,
|
|
layout->cachedLayout.availableHeight,
|
|
layout->cachedLayout.computedWidth,
|
|
layout->cachedLayout.computedHeight,
|
|
marginAxisRow,
|
|
marginAxisColumn,
|
|
config)) {
|
|
cachedResults = &layout->cachedLayout;
|
|
} else {
|
|
// Try to use the measurement cache.
|
|
for (uint32_t i = 0; i < layout->nextCachedMeasurementsIndex; i++) {
|
|
if (YGNodeCanUseCachedMeasurement(widthMeasureMode,
|
|
availableWidth,
|
|
heightMeasureMode,
|
|
availableHeight,
|
|
layout->cachedMeasurements[i].widthMeasureMode,
|
|
layout->cachedMeasurements[i].availableWidth,
|
|
layout->cachedMeasurements[i].heightMeasureMode,
|
|
layout->cachedMeasurements[i].availableHeight,
|
|
layout->cachedMeasurements[i].computedWidth,
|
|
layout->cachedMeasurements[i].computedHeight,
|
|
marginAxisRow,
|
|
marginAxisColumn,
|
|
config)) {
|
|
cachedResults = &layout->cachedMeasurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else if (performLayout) {
|
|
if (YGFloatsEqual(layout->cachedLayout.availableWidth, availableWidth) &&
|
|
YGFloatsEqual(layout->cachedLayout.availableHeight, availableHeight) &&
|
|
layout->cachedLayout.widthMeasureMode == widthMeasureMode &&
|
|
layout->cachedLayout.heightMeasureMode == heightMeasureMode) {
|
|
cachedResults = &layout->cachedLayout;
|
|
}
|
|
} else {
|
|
for (uint32_t i = 0; i < layout->nextCachedMeasurementsIndex; i++) {
|
|
if (YGFloatsEqual(layout->cachedMeasurements[i].availableWidth, availableWidth) &&
|
|
YGFloatsEqual(layout->cachedMeasurements[i].availableHeight, availableHeight) &&
|
|
layout->cachedMeasurements[i].widthMeasureMode == widthMeasureMode &&
|
|
layout->cachedMeasurements[i].heightMeasureMode == heightMeasureMode) {
|
|
cachedResults = &layout->cachedMeasurements[i];
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!needToVisitNode && cachedResults != nullptr) {
|
|
layout->measuredDimensions[YGDimensionWidth] = cachedResults->computedWidth;
|
|
layout->measuredDimensions[YGDimensionHeight] = cachedResults->computedHeight;
|
|
|
|
if (gPrintChanges && gPrintSkips) {
|
|
YGLog(node, YGLogLevelVerbose, "%s%d.{[skipped] ", YGSpacer(gDepth), gDepth);
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
YGLog(
|
|
node,
|
|
YGLogLevelVerbose,
|
|
"wm: %s, hm: %s, aw: %f ah: %f => d: (%f, %f) %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
availableWidth,
|
|
availableHeight,
|
|
cachedResults->computedWidth,
|
|
cachedResults->computedHeight,
|
|
reason);
|
|
}
|
|
} else {
|
|
if (gPrintChanges) {
|
|
YGLog(
|
|
node,
|
|
YGLogLevelVerbose,
|
|
"%s%d.{%s",
|
|
YGSpacer(gDepth),
|
|
gDepth,
|
|
needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
YGLog(
|
|
node,
|
|
YGLogLevelVerbose,
|
|
"wm: %s, hm: %s, aw: %f ah: %f %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
availableWidth,
|
|
availableHeight,
|
|
reason);
|
|
}
|
|
|
|
YGNodelayoutImpl(node,
|
|
availableWidth,
|
|
availableHeight,
|
|
parentDirection,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
parentWidth,
|
|
parentHeight,
|
|
performLayout,
|
|
config);
|
|
|
|
if (gPrintChanges) {
|
|
YGLog(
|
|
node,
|
|
YGLogLevelVerbose,
|
|
"%s%d.}%s",
|
|
YGSpacer(gDepth),
|
|
gDepth,
|
|
needToVisitNode ? "*" : "");
|
|
if (node->print) {
|
|
node->print(node);
|
|
}
|
|
YGLog(
|
|
node,
|
|
YGLogLevelVerbose,
|
|
"wm: %s, hm: %s, d: (%f, %f) %s\n",
|
|
YGMeasureModeName(widthMeasureMode, performLayout),
|
|
YGMeasureModeName(heightMeasureMode, performLayout),
|
|
layout->measuredDimensions[YGDimensionWidth],
|
|
layout->measuredDimensions[YGDimensionHeight],
|
|
reason);
|
|
}
|
|
|
|
layout->lastParentDirection = parentDirection;
|
|
|
|
if (cachedResults == nullptr) {
|
|
if (layout->nextCachedMeasurementsIndex == YG_MAX_CACHED_RESULT_COUNT) {
|
|
if (gPrintChanges) {
|
|
YGLog(node, YGLogLevelVerbose, "Out of cache entries!\n");
|
|
}
|
|
layout->nextCachedMeasurementsIndex = 0;
|
|
}
|
|
|
|
YGCachedMeasurement *newCacheEntry;
|
|
if (performLayout) {
|
|
// Use the single layout cache entry.
|
|
newCacheEntry = &layout->cachedLayout;
|
|
} else {
|
|
// Allocate a new measurement cache entry.
|
|
newCacheEntry = &layout->cachedMeasurements[layout->nextCachedMeasurementsIndex];
|
|
layout->nextCachedMeasurementsIndex++;
|
|
}
|
|
|
|
newCacheEntry->availableWidth = availableWidth;
|
|
newCacheEntry->availableHeight = availableHeight;
|
|
newCacheEntry->widthMeasureMode = widthMeasureMode;
|
|
newCacheEntry->heightMeasureMode = heightMeasureMode;
|
|
newCacheEntry->computedWidth = layout->measuredDimensions[YGDimensionWidth];
|
|
newCacheEntry->computedHeight = layout->measuredDimensions[YGDimensionHeight];
|
|
}
|
|
}
|
|
|
|
if (performLayout) {
|
|
node->layout.dimensions[YGDimensionWidth] = node->layout.measuredDimensions[YGDimensionWidth];
|
|
node->layout.dimensions[YGDimensionHeight] = node->layout.measuredDimensions[YGDimensionHeight];
|
|
node->hasNewLayout = true;
|
|
node->isDirty = false;
|
|
}
|
|
|
|
gDepth--;
|
|
layout->generationCount = gCurrentGenerationCount;
|
|
return (needToVisitNode || cachedResults == nullptr);
|
|
}
|
|
|
|
void YGConfigSetPointScaleFactor(const YGConfigRef config, const float pixelsInPoint) {
|
|
YGAssertWithConfig(config, pixelsInPoint >= 0.0f, "Scale factor should not be less than zero");
|
|
|
|
// We store points for Pixel as we will use it for rounding
|
|
if (pixelsInPoint == 0.0f) {
|
|
// Zero is used to skip rounding
|
|
config->pointScaleFactor = 0.0f;
|
|
} else {
|
|
config->pointScaleFactor = pixelsInPoint;
|
|
}
|
|
}
|
|
|
|
static void YGRoundToPixelGrid(const YGNodeRef node,
|
|
const float pointScaleFactor,
|
|
const float absoluteLeft,
|
|
const float absoluteTop) {
|
|
if (pointScaleFactor == 0.0f) {
|
|
return;
|
|
}
|
|
|
|
const float nodeLeft = node->layout.position[YGEdgeLeft];
|
|
const float nodeTop = node->layout.position[YGEdgeTop];
|
|
|
|
const float nodeWidth = node->layout.dimensions[YGDimensionWidth];
|
|
const float nodeHeight = node->layout.dimensions[YGDimensionHeight];
|
|
|
|
const float absoluteNodeLeft = absoluteLeft + nodeLeft;
|
|
const float absoluteNodeTop = absoluteTop + nodeTop;
|
|
|
|
const float absoluteNodeRight = absoluteNodeLeft + nodeWidth;
|
|
const float absoluteNodeBottom = absoluteNodeTop + nodeHeight;
|
|
|
|
// If a node has a custom measure function we never want to round down its size as this could
|
|
// lead to unwanted text truncation.
|
|
const bool textRounding = node->nodeType == YGNodeTypeText;
|
|
|
|
node->layout.position[YGEdgeLeft] =
|
|
YGRoundValueToPixelGrid(nodeLeft, pointScaleFactor, false, textRounding);
|
|
node->layout.position[YGEdgeTop] =
|
|
YGRoundValueToPixelGrid(nodeTop, pointScaleFactor, false, textRounding);
|
|
|
|
// We multiply dimension by scale factor and if the result is close to the whole number, we don't
|
|
// have any fraction
|
|
// To verify if the result is close to whole number we want to check both floor and ceil numbers
|
|
const bool hasFractionalWidth = !YGFloatsEqual(fmodf(nodeWidth * pointScaleFactor, 1.0), 0) &&
|
|
!YGFloatsEqual(fmodf(nodeWidth * pointScaleFactor, 1.0), 1.0);
|
|
const bool hasFractionalHeight = !YGFloatsEqual(fmodf(nodeHeight * pointScaleFactor, 1.0), 0) &&
|
|
!YGFloatsEqual(fmodf(nodeHeight * pointScaleFactor, 1.0), 1.0);
|
|
|
|
node->layout.dimensions[YGDimensionWidth] =
|
|
YGRoundValueToPixelGrid(absoluteNodeRight,
|
|
pointScaleFactor,
|
|
(textRounding && hasFractionalWidth),
|
|
(textRounding && !hasFractionalWidth)) -
|
|
YGRoundValueToPixelGrid(absoluteNodeLeft, pointScaleFactor, false, textRounding);
|
|
node->layout.dimensions[YGDimensionHeight] =
|
|
YGRoundValueToPixelGrid(absoluteNodeBottom,
|
|
pointScaleFactor,
|
|
(textRounding && hasFractionalHeight),
|
|
(textRounding && !hasFractionalHeight)) -
|
|
YGRoundValueToPixelGrid(absoluteNodeTop, pointScaleFactor, false, textRounding);
|
|
|
|
const uint32_t childCount = YGNodeListCount(node->children);
|
|
for (uint32_t i = 0; i < childCount; i++) {
|
|
YGRoundToPixelGrid(YGNodeGetChild(node, i), pointScaleFactor, absoluteNodeLeft, absoluteNodeTop);
|
|
}
|
|
}
|
|
|
|
void YGNodeCalculateLayout(const YGNodeRef node,
|
|
const float parentWidth,
|
|
const float parentHeight,
|
|
const YGDirection parentDirection) {
|
|
// Increment the generation count. This will force the recursive routine to
|
|
// visit
|
|
// all dirty nodes at least once. Subsequent visits will be skipped if the
|
|
// input
|
|
// parameters don't change.
|
|
gCurrentGenerationCount++;
|
|
|
|
YGResolveDimensions(node);
|
|
|
|
float width = YGUndefined;
|
|
YGMeasureMode widthMeasureMode = YGMeasureModeUndefined;
|
|
if (YGNodeIsStyleDimDefined(node, YGFlexDirectionRow, parentWidth)) {
|
|
width = YGResolveValue(node->resolvedDimensions[dim[YGFlexDirectionRow]], parentWidth) +
|
|
YGNodeMarginForAxis(node, YGFlexDirectionRow, parentWidth);
|
|
widthMeasureMode = YGMeasureModeExactly;
|
|
} else if (YGResolveValue(&node->style.maxDimensions[YGDimensionWidth], parentWidth) >= 0.0f) {
|
|
width = YGResolveValue(&node->style.maxDimensions[YGDimensionWidth], parentWidth);
|
|
widthMeasureMode = YGMeasureModeAtMost;
|
|
} else {
|
|
width = parentWidth;
|
|
widthMeasureMode = YGFloatIsUndefined(width) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
}
|
|
|
|
float height = YGUndefined;
|
|
YGMeasureMode heightMeasureMode = YGMeasureModeUndefined;
|
|
if (YGNodeIsStyleDimDefined(node, YGFlexDirectionColumn, parentHeight)) {
|
|
height = YGResolveValue(node->resolvedDimensions[dim[YGFlexDirectionColumn]], parentHeight) +
|
|
YGNodeMarginForAxis(node, YGFlexDirectionColumn, parentWidth);
|
|
heightMeasureMode = YGMeasureModeExactly;
|
|
} else if (YGResolveValue(&node->style.maxDimensions[YGDimensionHeight], parentHeight) >= 0.0f) {
|
|
height = YGResolveValue(&node->style.maxDimensions[YGDimensionHeight], parentHeight);
|
|
heightMeasureMode = YGMeasureModeAtMost;
|
|
} else {
|
|
height = parentHeight;
|
|
heightMeasureMode = YGFloatIsUndefined(height) ? YGMeasureModeUndefined : YGMeasureModeExactly;
|
|
}
|
|
|
|
if (YGLayoutNodeInternal(node,
|
|
width,
|
|
height,
|
|
parentDirection,
|
|
widthMeasureMode,
|
|
heightMeasureMode,
|
|
parentWidth,
|
|
parentHeight,
|
|
true,
|
|
"initial",
|
|
node->config)) {
|
|
YGNodeSetPosition(node, node->layout.direction, parentWidth, parentHeight, parentWidth);
|
|
YGRoundToPixelGrid(node, node->config->pointScaleFactor, 0.0f, 0.0f);
|
|
|
|
if (gPrintTree) {
|
|
YGNodePrint(
|
|
node,
|
|
(YGPrintOptions)(
|
|
YGPrintOptionsLayout | YGPrintOptionsChildren |
|
|
YGPrintOptionsStyle));
|
|
}
|
|
}
|
|
}
|
|
|
|
void YGConfigSetLogger(const YGConfigRef config, YGLogger logger) {
|
|
if (logger != nullptr) {
|
|
config->logger = logger;
|
|
} else {
|
|
#ifdef ANDROID
|
|
config->logger = &YGAndroidLog;
|
|
#else
|
|
config->logger = &YGDefaultLog;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
static void YGVLog(const YGConfigRef config,
|
|
const YGNodeRef node,
|
|
YGLogLevel level,
|
|
const char *format,
|
|
va_list args) {
|
|
const YGConfigRef logConfig = config != nullptr ? config : &gYGConfigDefaults;
|
|
logConfig->logger(logConfig, node, level, format, args);
|
|
|
|
if (level == YGLogLevelFatal) {
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void YGLogWithConfig(const YGConfigRef config, YGLogLevel level, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
YGVLog(config, nullptr, level, format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void YGLog(const YGNodeRef node, YGLogLevel level, const char *format, ...) {
|
|
va_list args;
|
|
va_start(args, format);
|
|
YGVLog(node == nullptr ? nullptr : node->config, node, level, format, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void YGAssert(const bool condition, const char *message) {
|
|
if (!condition) {
|
|
YGLog(nullptr, YGLogLevelFatal, "%s\n", message);
|
|
}
|
|
}
|
|
|
|
void YGAssertWithNode(const YGNodeRef node, const bool condition, const char *message) {
|
|
if (!condition) {
|
|
YGLog(node, YGLogLevelFatal, "%s\n", message);
|
|
}
|
|
}
|
|
|
|
void YGAssertWithConfig(const YGConfigRef config, const bool condition, const char *message) {
|
|
if (!condition) {
|
|
YGLogWithConfig(config, YGLogLevelFatal, "%s\n", message);
|
|
}
|
|
}
|
|
|
|
void YGConfigSetExperimentalFeatureEnabled(const YGConfigRef config,
|
|
const YGExperimentalFeature feature,
|
|
const bool enabled) {
|
|
config->experimentalFeatures[feature] = enabled;
|
|
}
|
|
|
|
inline bool YGConfigIsExperimentalFeatureEnabled(const YGConfigRef config,
|
|
const YGExperimentalFeature feature) {
|
|
return config->experimentalFeatures[feature];
|
|
}
|
|
|
|
void YGConfigSetUseWebDefaults(const YGConfigRef config, const bool enabled) {
|
|
config->useWebDefaults = enabled;
|
|
}
|
|
|
|
void YGConfigSetUseLegacyStretchBehaviour(const YGConfigRef config,
|
|
const bool useLegacyStretchBehaviour) {
|
|
config->useLegacyStretchBehaviour = useLegacyStretchBehaviour;
|
|
}
|
|
|
|
bool YGConfigGetUseWebDefaults(const YGConfigRef config) {
|
|
return config->useWebDefaults;
|
|
}
|
|
|
|
void YGConfigSetContext(const YGConfigRef config, void *context) {
|
|
config->context = context;
|
|
}
|
|
|
|
void *YGConfigGetContext(const YGConfigRef config) {
|
|
return config->context;
|
|
}
|
|
|
|
void YGConfigSetNodeClonedFunc(const YGConfigRef config, const YGNodeClonedFunc callback) {
|
|
config->cloneNodeCallback = callback;
|
|
}
|