Files
yoga/java/com/facebook/csslayout/LayoutEngine.java
Emil Sjolander d4121401d7 BREAKING - Fix unconstraint sizing in main axis
Summary:
@public
Introduce `overflow:scroll` so that scrolling can be implemented without the current overflow:visible hackiness. Currently we use AT_MOST to measure in the cross axis but not in the main axis. This was done to enable scrolling containers where children are not constraint in the main axis by their parent. This caused problems for non-scrolling containers though as it meant that their children cannot be measured correctly in the main axis. Introducing `overflow:scroll` fixes this.

Reviewed By: astreet

Differential Revision: D3855801

fbshipit-source-id: 6077b0bcb68fe5ddd4aa22926acab40ff4d83949
2016-09-14 09:07:44 -07:00

1402 lines
74 KiB
Java

/**
* Copyright (c) 2014-present, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*/
package com.facebook.csslayout;
import com.facebook.infer.annotation.Assertions;
import static com.facebook.csslayout.CSSLayout.DIMENSION_HEIGHT;
import static com.facebook.csslayout.CSSLayout.DIMENSION_WIDTH;
import static com.facebook.csslayout.CSSLayout.POSITION_BOTTOM;
import static com.facebook.csslayout.CSSLayout.POSITION_LEFT;
import static com.facebook.csslayout.CSSLayout.POSITION_RIGHT;
import static com.facebook.csslayout.CSSLayout.POSITION_TOP;
/**
* Calculates layouts based on CSS style. See {@link #layoutNode(CSSNode, float, float)}.
*/
public class LayoutEngine {
private static final int CSS_FLEX_DIRECTION_COLUMN =
CSSFlexDirection.COLUMN.ordinal();
private static final int CSS_FLEX_DIRECTION_COLUMN_REVERSE =
CSSFlexDirection.COLUMN_REVERSE.ordinal();
private static final int CSS_FLEX_DIRECTION_ROW =
CSSFlexDirection.ROW.ordinal();
private static final int CSS_FLEX_DIRECTION_ROW_REVERSE =
CSSFlexDirection.ROW_REVERSE.ordinal();
private static final int CSS_POSITION_RELATIVE = CSSPositionType.RELATIVE.ordinal();
private static final int CSS_POSITION_ABSOLUTE = CSSPositionType.ABSOLUTE.ordinal();
private static final int[] leading = {
POSITION_TOP,
POSITION_BOTTOM,
POSITION_LEFT,
POSITION_RIGHT,
};
private static final int[] trailing = {
POSITION_BOTTOM,
POSITION_TOP,
POSITION_RIGHT,
POSITION_LEFT,
};
private static final int[] pos = {
POSITION_TOP,
POSITION_BOTTOM,
POSITION_LEFT,
POSITION_RIGHT,
};
private static final int[] dim = {
DIMENSION_HEIGHT,
DIMENSION_HEIGHT,
DIMENSION_WIDTH,
DIMENSION_WIDTH,
};
private static final int[] leadingSpacing = {
Spacing.TOP,
Spacing.BOTTOM,
Spacing.START,
Spacing.START
};
private static final int[] trailingSpacing = {
Spacing.BOTTOM,
Spacing.TOP,
Spacing.END,
Spacing.END
};
private static boolean isFlexBasisAuto(CSSNode node) {
return CSSConstants.isUndefined(node.style.flexBasis);
}
private static float getFlexGrowFactor(CSSNode node) {
return node.style.flexGrow;
}
private static float getFlexShrinkFactor(CSSNode node) {
return node.style.flexShrink;
}
private static float boundAxisWithinMinAndMax(CSSNode node, int axis, float value) {
float min = CSSConstants.UNDEFINED;
float max = CSSConstants.UNDEFINED;
if (axis == CSS_FLEX_DIRECTION_COLUMN ||
axis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
min = node.style.minHeight;
max = node.style.maxHeight;
} else if (axis == CSS_FLEX_DIRECTION_ROW ||
axis == CSS_FLEX_DIRECTION_ROW_REVERSE) {
min = node.style.minWidth;
max = node.style.maxWidth;
}
float boundValue = value;
if (!Float.isNaN(max) && max >= 0.0 && boundValue > max) {
boundValue = max;
}
if (!Float.isNaN(min) && min >= 0.0 && boundValue < min) {
boundValue = min;
}
return boundValue;
}
private static float boundAxis(CSSNode node, int axis, float value) {
float paddingAndBorderAxis =
node.style.padding.getWithFallback(leadingSpacing[axis], leading[axis]) +
node.style.border.getWithFallback(leadingSpacing[axis], leading[axis]) +
node.style.padding.getWithFallback(trailingSpacing[axis], trailing[axis]) +
node.style.border.getWithFallback(trailingSpacing[axis], trailing[axis]);
return Math.max(boundAxisWithinMinAndMax(node, axis, value), paddingAndBorderAxis);
}
private static float getRelativePosition(CSSNode node, int axis) {
float lead = node.style.position.getWithFallback(leadingSpacing[axis], leading[axis]);
if (!Float.isNaN(lead)) {
return lead;
}
float trailingPos = node.style.position.getWithFallback(trailingSpacing[axis], trailing[axis]);
return Float.isNaN(trailingPos) ? 0 : -trailingPos;
}
private static void setPosition(CSSNode node, CSSDirection direction) {
int mainAxis = resolveAxis(getFlexDirection(node), direction);
int crossAxis = getCrossFlexDirection(mainAxis, direction);
node.layout.position[leading[mainAxis]] = node.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) +
getRelativePosition(node, mainAxis);
node.layout.position[trailing[mainAxis]] = node.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) +
getRelativePosition(node, mainAxis);
node.layout.position[leading[crossAxis]] = node.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) +
getRelativePosition(node, crossAxis);
node.layout.position[trailing[crossAxis]] = node.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) +
getRelativePosition(node, crossAxis);
}
private static int resolveAxis(
int axis,
CSSDirection direction) {
if (direction == CSSDirection.RTL) {
if (axis == CSS_FLEX_DIRECTION_ROW) {
return CSS_FLEX_DIRECTION_ROW_REVERSE;
} else if (axis == CSS_FLEX_DIRECTION_ROW_REVERSE) {
return CSS_FLEX_DIRECTION_ROW;
}
}
return axis;
}
private static CSSDirection resolveDirection(CSSNode node, CSSDirection parentDirection) {
CSSDirection direction = node.style.direction;
if (direction == CSSDirection.INHERIT) {
direction = (parentDirection == null ? CSSDirection.LTR : parentDirection);
}
return direction;
}
private static int getFlexDirection(CSSNode node) {
return node.style.flexDirection.ordinal();
}
private static int getCrossFlexDirection(
int axis,
CSSDirection direction) {
if (axis == CSS_FLEX_DIRECTION_COLUMN ||
axis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
return resolveAxis(CSS_FLEX_DIRECTION_ROW, direction);
} else {
return CSS_FLEX_DIRECTION_COLUMN;
}
}
private static CSSAlign getAlignItem(CSSNode node, CSSNode child) {
if (child.style.alignSelf != CSSAlign.AUTO) {
return child.style.alignSelf;
}
return node.style.alignItems;
}
private static boolean isMeasureDefined(CSSNode node) {
return node.isMeasureDefined();
}
/*package*/ static void layoutNode(
CSSLayoutContext layoutContext,
CSSNode node,
float availableWidth,
float availableHeight,
CSSDirection parentDirection) {
// Increment the generation count. This will force the recursive routine to visit
// all dirty nodes at least once. Subsequent visits will be skipped if the input
// parameters don't change.
layoutContext.currentGenerationCount++;
CSSMeasureMode widthMeasureMode = CSSMeasureMode.UNDEFINED;
CSSMeasureMode heightMeasureMode = CSSMeasureMode.UNDEFINED;
if (!Float.isNaN(availableWidth)) {
widthMeasureMode = CSSMeasureMode.EXACTLY;
} else if (node.style.dimensions[DIMENSION_WIDTH] >= 0.0) {
float marginAxisRow = (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
availableWidth = node.style.dimensions[DIMENSION_WIDTH] + marginAxisRow;
widthMeasureMode = CSSMeasureMode.EXACTLY;
} else if (node.style.maxWidth >= 0.0) {
availableWidth = node.style.maxWidth;
widthMeasureMode = CSSMeasureMode.AT_MOST;
}
if (!Float.isNaN(availableHeight)) {
heightMeasureMode = CSSMeasureMode.EXACTLY;
} else if (node.style.dimensions[DIMENSION_HEIGHT] >= 0.0) {
float marginAxisColumn = (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
availableHeight = node.style.dimensions[DIMENSION_HEIGHT] + marginAxisColumn;
heightMeasureMode = CSSMeasureMode.EXACTLY;
} else if (node.style.maxHeight >= 0.0) {
availableHeight = node.style.maxHeight;
heightMeasureMode = CSSMeasureMode.AT_MOST;
}
if (layoutNodeInternal(layoutContext, node, availableWidth, availableHeight, parentDirection, widthMeasureMode, heightMeasureMode, true, "initial")) {
setPosition(node, node.layout.direction);
}
}
/*package*/ static boolean canUseCachedMeasurement(
boolean isTextNode,
float availableWidth,
float availableHeight,
float marginRow,
float marginColumn,
CSSMeasureMode widthMeasureMode,
CSSMeasureMode heightMeasureMode,
CSSCachedMeasurement cachedLayout) {
boolean isHeightSame =
(cachedLayout.heightMeasureMode == CSSMeasureMode.UNDEFINED && heightMeasureMode == CSSMeasureMode.UNDEFINED) ||
(cachedLayout.heightMeasureMode == heightMeasureMode && FloatUtil.floatsEqual(cachedLayout.availableHeight, availableHeight));
boolean isWidthSame =
(cachedLayout.widthMeasureMode == CSSMeasureMode.UNDEFINED && widthMeasureMode == CSSMeasureMode.UNDEFINED) ||
(cachedLayout.widthMeasureMode == widthMeasureMode && FloatUtil.floatsEqual(cachedLayout.availableWidth, availableWidth));
if (isHeightSame && isWidthSame) {
return true;
}
boolean isHeightValid =
(cachedLayout.heightMeasureMode == CSSMeasureMode.UNDEFINED && heightMeasureMode == CSSMeasureMode.AT_MOST && cachedLayout.computedHeight <= (availableHeight - marginColumn)) ||
(heightMeasureMode == CSSMeasureMode.EXACTLY && FloatUtil.floatsEqual(cachedLayout.computedHeight, availableHeight - marginColumn));
if (isWidthSame && isHeightValid) {
return true;
}
boolean isWidthValid =
(cachedLayout.widthMeasureMode == CSSMeasureMode.UNDEFINED && widthMeasureMode == CSSMeasureMode.AT_MOST && cachedLayout.computedWidth <= (availableWidth - marginRow)) ||
(widthMeasureMode == CSSMeasureMode.EXACTLY && FloatUtil.floatsEqual(cachedLayout.computedWidth, availableWidth - marginRow));
if (isHeightSame && isWidthValid) {
return true;
}
if (isHeightValid && isWidthValid) {
return true;
}
// We know this to be text so we can apply some more specialized heuristics.
if (isTextNode) {
if (isWidthSame) {
if (heightMeasureMode == CSSMeasureMode.UNDEFINED) {
// Width is the same and height is not restricted. Re-use cahced value.
return true;
}
if (heightMeasureMode == CSSMeasureMode.AT_MOST &&
cachedLayout.computedHeight < (availableHeight - marginColumn)) {
// Width is the same and height restriction is greater than the cached height. Re-use cached value.
return true;
}
// Width is the same but height restriction imposes smaller height than previously measured.
// Update the cached value to respect the new height restriction.
cachedLayout.computedHeight = availableHeight - marginColumn;
return true;
}
if (cachedLayout.widthMeasureMode == CSSMeasureMode.UNDEFINED) {
if (widthMeasureMode == CSSMeasureMode.UNDEFINED ||
(widthMeasureMode == CSSMeasureMode.AT_MOST &&
cachedLayout.computedWidth <= (availableWidth - marginRow))) {
// Previsouly this text was measured with no width restriction, if width is now restricted
// but to a larger value than the previsouly measured width we can re-use the measurement
// as we know it will fit.
return true;
}
}
}
return false;
}
//
// This is a wrapper around the layoutNodeImpl function. It determines
// whether the layout request is redundant and can be skipped.
//
// Parameters:
// Input parameters are the same as layoutNodeImpl (see below)
// Return parameter is true if layout was performed, false if skipped
//
private static boolean layoutNodeInternal(
CSSLayoutContext layoutContext,
CSSNode node,
float availableWidth,
float availableHeight,
CSSDirection parentDirection,
CSSMeasureMode widthMeasureMode,
CSSMeasureMode heightMeasureMode,
boolean performLayout,
String reason) {
CSSLayout layout = node.layout;
boolean needToVisitNode = (node.isDirty() && layout.generationCount != layoutContext.currentGenerationCount) ||
layout.lastParentDirection != parentDirection;
if (needToVisitNode) {
// Invalidate the cached results.
layout.nextCachedMeasurementsIndex = 0;
layout.cachedLayout.widthMeasureMode = null;
layout.cachedLayout.heightMeasureMode = null;
}
CSSCachedMeasurement cachedResults = null;
// Determine whether the results are already cached. We maintain a separate
// cache for layouts and measurements. A layout operation modifies the positions
// and dimensions for nodes in the subtree. The algorithm assumes that each node
// gets layed out a maximum of one time per tree layout, but multiple measurements
// may be required to resolve all of the flex dimensions.
// We handle nodes with measure functions specially here because they are the most
// expensive to measure, so it's worth avoiding redundant measurements if at all possible.
if (isMeasureDefined(node)) {
float marginAxisRow =
node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) +
node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]);
float marginAxisColumn =
node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) +
node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]);
// First, try to use the layout cache.
if (canUseCachedMeasurement(node.isTextNode(), availableWidth, availableHeight, marginAxisRow, marginAxisColumn,
widthMeasureMode, heightMeasureMode, layout.cachedLayout)) {
cachedResults = layout.cachedLayout;
} else {
// Try to use the measurement cache.
for (int i = 0; i < layout.nextCachedMeasurementsIndex; i++) {
if (canUseCachedMeasurement(node.isTextNode(), availableWidth, availableHeight, marginAxisRow, marginAxisColumn,
widthMeasureMode, heightMeasureMode, layout.cachedMeasurements[i])) {
cachedResults = layout.cachedMeasurements[i];
break;
}
}
}
} else if (performLayout) {
if (FloatUtil.floatsEqual(layout.cachedLayout.availableWidth, availableWidth) &&
FloatUtil.floatsEqual(layout.cachedLayout.availableHeight, availableHeight) &&
layout.cachedLayout.widthMeasureMode == widthMeasureMode &&
layout.cachedLayout.heightMeasureMode == heightMeasureMode) {
cachedResults = layout.cachedLayout;
}
} else {
for (int i = 0; i < layout.nextCachedMeasurementsIndex; i++) {
if (FloatUtil.floatsEqual(layout.cachedMeasurements[i].availableWidth, availableWidth) &&
FloatUtil.floatsEqual(layout.cachedMeasurements[i].availableHeight, availableHeight) &&
layout.cachedMeasurements[i].widthMeasureMode == widthMeasureMode &&
layout.cachedMeasurements[i].heightMeasureMode == heightMeasureMode) {
cachedResults = layout.cachedMeasurements[i];
break;
}
}
}
if (!needToVisitNode && cachedResults != null) {
layout.measuredDimensions[DIMENSION_WIDTH] = cachedResults.computedWidth;
layout.measuredDimensions[DIMENSION_HEIGHT] = cachedResults.computedHeight;
} else {
layoutNodeImpl(layoutContext, node, availableWidth, availableHeight, parentDirection, widthMeasureMode, heightMeasureMode, performLayout);
layout.lastParentDirection = parentDirection;
if (cachedResults == null) {
if (layout.nextCachedMeasurementsIndex == CSSLayout.MAX_CACHED_RESULT_COUNT) {
layout.nextCachedMeasurementsIndex = 0;
}
CSSCachedMeasurement newCacheEntry = null;
if (performLayout) {
// Use the single layout cache entry.
newCacheEntry = layout.cachedLayout;
} else {
// Allocate a new measurement cache entry.
newCacheEntry = layout.cachedMeasurements[layout.nextCachedMeasurementsIndex];
if (newCacheEntry == null) {
newCacheEntry = new CSSCachedMeasurement();
layout.cachedMeasurements[layout.nextCachedMeasurementsIndex] = newCacheEntry;
}
layout.nextCachedMeasurementsIndex++;
}
newCacheEntry.availableWidth = availableWidth;
newCacheEntry.availableHeight = availableHeight;
newCacheEntry.widthMeasureMode = widthMeasureMode;
newCacheEntry.heightMeasureMode = heightMeasureMode;
newCacheEntry.computedWidth = layout.measuredDimensions[DIMENSION_WIDTH];
newCacheEntry.computedHeight = layout.measuredDimensions[DIMENSION_HEIGHT];
}
}
if (performLayout) {
node.layout.dimensions[DIMENSION_WIDTH] = node.layout.measuredDimensions[DIMENSION_WIDTH];
node.layout.dimensions[DIMENSION_HEIGHT] = node.layout.measuredDimensions[DIMENSION_HEIGHT];
node.markHasNewLayout();
}
layout.generationCount = layoutContext.currentGenerationCount;
return (needToVisitNode || cachedResults == null);
}
//
// This is the main routine that implements a subset of the flexbox layout algorithm
// described in the W3C CSS documentation: https://www.w3.org/TR/css3-flexbox/.
//
// Limitations of this algorithm, compared to the full standard:
// * Display property is always assumed to be 'flex' except for Text nodes, which
// are assumed to be 'inline-flex'.
// * The 'zIndex' property (or any form of z ordering) is not supported. Nodes are
// stacked in document order.
// * The 'order' property is not supported. The order of flex items is always defined
// by document order.
// * The 'visibility' property is always assumed to be 'visible'. Values of 'collapse'
// and 'hidden' are not supported.
// * The 'wrap' property supports only 'nowrap' (which is the default) or 'wrap'. The
// rarely-used 'wrap-reverse' is not supported.
// * Rather than allowing arbitrary combinations of flexGrow, flexShrink and
// flexBasis, this algorithm supports only the three most common combinations:
// flex: 0 is equiavlent to flex: 0 0 auto
// flex: n (where n is a positive value) is equivalent to flex: n 1 auto
// If POSITIVE_FLEX_IS_AUTO is 0, then it is equivalent to flex: n 0 0
// This is faster because the content doesn't need to be measured, but it's
// less flexible because the basis is always 0 and can't be overriden with
// the width/height attributes.
// flex: -1 (or any negative value) is equivalent to flex: 0 1 auto
// * Margins cannot be specified as 'auto'. They must be specified in terms of pixel
// values, and the default value is 0.
// * The 'baseline' value is not supported for alignItems and alignSelf properties.
// * Values of width, maxWidth, minWidth, height, maxHeight and minHeight must be
// specified as pixel values, not as percentages.
// * There is no support for calculation of dimensions based on intrinsic aspect ratios
// (e.g. images).
// * There is no support for forced breaks.
// * It does not support vertical inline directions (top-to-bottom or bottom-to-top text).
//
// Deviations from standard:
// * Section 4.5 of the spec indicates that all flex items have a default minimum
// main size. For text blocks, for example, this is the width of the widest word.
// Calculating the minimum width is expensive, so we forego it and assume a default
// minimum main size of 0.
// * Min/Max sizes in the main axis are not honored when resolving flexible lengths.
// * The spec indicates that the default value for 'flexDirection' is 'row', but
// the algorithm below assumes a default of 'column'.
//
// Input parameters:
// - node: current node to be sized and layed out
// - availableWidth & availableHeight: available size to be used for sizing the node
// or CSS_UNDEFINED if the size is not available; interpretation depends on layout
// flags
// - parentDirection: the inline (text) direction within the parent (left-to-right or
// right-to-left)
// - widthMeasureMode: indicates the sizing rules for the width (see below for explanation)
// - heightMeasureMode: indicates the sizing rules for the height (see below for explanation)
// - performLayout: specifies whether the caller is interested in just the dimensions
// of the node or it requires the entire node and its subtree to be layed out
// (with final positions)
//
// Details:
// This routine is called recursively to lay out subtrees of flexbox elements. It uses the
// information in node.style, which is treated as a read-only input. It is responsible for
// setting the layout.direction and layout.measured_dimensions fields for the input node as well
// as the layout.position and layout.line_index fields for its child nodes. The
// layout.measured_dimensions field includes any border or padding for the node but does
// not include margins.
//
// The spec describes four different layout modes: "fill available", "max content", "min content",
// and "fit content". Of these, we don't use "min content" because we don't support default
// minimum main sizes (see above for details). Each of our measure modes maps to a layout mode
// from the spec (https://www.w3.org/TR/css3-sizing/#terms):
// - CSS_MEASURE_MODE_UNDEFINED: max content
// - CSS_MEASURE_MODE_EXACTLY: fill available
// - CSS_MEASURE_MODE_AT_MOST: fit content
//
// When calling layoutNodeImpl and layoutNodeInternal, if the caller passes an available size of
// undefined then it must also pass a measure mode of CSS_MEASURE_MODE_UNDEFINED in that dimension.
//
private static void layoutNodeImpl(
CSSLayoutContext layoutContext,
CSSNode node,
float availableWidth,
float availableHeight,
CSSDirection parentDirection,
CSSMeasureMode widthMeasureMode,
CSSMeasureMode heightMeasureMode,
boolean performLayout) {
Assertions.assertCondition(Float.isNaN(availableWidth) ? widthMeasureMode == CSSMeasureMode.UNDEFINED : true, "availableWidth is indefinite so widthMeasureMode must be CSSMeasureMode.UNDEFINED");
Assertions.assertCondition(Float.isNaN(availableHeight) ? heightMeasureMode == CSSMeasureMode.UNDEFINED : true, "availableHeight is indefinite so heightMeasureMode must be CSSMeasureMode.UNDEFINED");
float paddingAndBorderAxisRow = ((node.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW])) + (node.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW])));
float paddingAndBorderAxisColumn = ((node.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) + (node.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])));
float marginAxisRow = (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
float marginAxisColumn = (node.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
// Set the resolved resolution in the node's layout.
CSSDirection direction = resolveDirection(node, parentDirection);
node.layout.direction = direction;
// For content (text) nodes, determine the dimensions based on the text contents.
if (isMeasureDefined(node)) {
float innerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
float innerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
if (widthMeasureMode == CSSMeasureMode.EXACTLY && heightMeasureMode == CSSMeasureMode.EXACTLY) {
// Don't bother sizing the text if both dimensions are already defined.
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
} else if (innerWidth <= 0 || innerHeight <= 0) {
// Don't bother sizing the text if there's no horizontal or vertical space.
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
} else {
// Measure the text under the current constraints.
MeasureOutput measureDim = node.measure(
layoutContext.measureOutput,
innerWidth,
widthMeasureMode,
innerHeight,
heightMeasureMode
);
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW,
(widthMeasureMode == CSSMeasureMode.UNDEFINED || widthMeasureMode == CSSMeasureMode.AT_MOST) ?
measureDim.width + paddingAndBorderAxisRow :
availableWidth - marginAxisRow);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN,
(heightMeasureMode == CSSMeasureMode.UNDEFINED || heightMeasureMode == CSSMeasureMode.AT_MOST) ?
measureDim.height + paddingAndBorderAxisColumn :
availableHeight - marginAxisColumn);
}
return;
}
// For nodes with no children, use the available values if they were provided, or
// the minimum size as indicated by the padding and border sizes.
int childCount = node.getChildCount();
if (childCount == 0) {
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW,
(widthMeasureMode == CSSMeasureMode.UNDEFINED || widthMeasureMode == CSSMeasureMode.AT_MOST) ?
paddingAndBorderAxisRow :
availableWidth - marginAxisRow);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN,
(heightMeasureMode == CSSMeasureMode.UNDEFINED || heightMeasureMode == CSSMeasureMode.AT_MOST) ?
paddingAndBorderAxisColumn :
availableHeight - marginAxisColumn);
return;
}
// If we're not being asked to perform a full layout, we can handle a number of common
// cases here without incurring the cost of the remaining function.
if (!performLayout) {
// If we're being asked to size the content with an at most constraint but there is no available width,
// the measurement will always be zero.
if (widthMeasureMode == CSSMeasureMode.AT_MOST && availableWidth <= 0 &&
heightMeasureMode == CSSMeasureMode.AT_MOST && availableHeight <= 0) {
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
return;
}
if (widthMeasureMode == CSSMeasureMode.AT_MOST && availableWidth <= 0) {
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, 0);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, Float.isNaN(availableHeight) ? 0 : (availableHeight - marginAxisColumn));
return;
}
if (heightMeasureMode == CSSMeasureMode.AT_MOST && availableHeight <= 0) {
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, Float.isNaN(availableWidth) ? 0 : (availableWidth - marginAxisRow));
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, 0);
return;
}
// If we're being asked to use an exact width/height, there's no need to measure the children.
if (widthMeasureMode == CSSMeasureMode.EXACTLY && heightMeasureMode == CSSMeasureMode.EXACTLY) {
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
return;
}
}
// STEP 1: CALCULATE VALUES FOR REMAINDER OF ALGORITHM
int mainAxis = resolveAxis(getFlexDirection(node), direction);
int crossAxis = getCrossFlexDirection(mainAxis, direction);
boolean isMainAxisRow = (mainAxis == CSS_FLEX_DIRECTION_ROW || mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE);
CSSJustify justifyContent = node.style.justifyContent;
boolean isNodeFlexWrap = (node.style.flexWrap == CSSWrap.WRAP);
CSSNode firstAbsoluteChild = null;
CSSNode currentAbsoluteChild = null;
float leadingPaddingAndBorderMain = (node.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]));
float trailingPaddingAndBorderMain = (node.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + node.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]));
float leadingPaddingAndBorderCross = (node.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]));
float paddingAndBorderAxisMain = ((node.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (node.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + node.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])));
float paddingAndBorderAxisCross = ((node.style.padding.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) + (node.style.padding.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) + node.style.border.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])));
CSSMeasureMode measureModeMainDim = isMainAxisRow ? widthMeasureMode : heightMeasureMode;
CSSMeasureMode measureModeCrossDim = isMainAxisRow ? heightMeasureMode : widthMeasureMode;
// STEP 2: DETERMINE AVAILABLE SIZE IN MAIN AND CROSS DIRECTIONS
float availableInnerWidth = availableWidth - marginAxisRow - paddingAndBorderAxisRow;
float availableInnerHeight = availableHeight - marginAxisColumn - paddingAndBorderAxisColumn;
float availableInnerMainDim = isMainAxisRow ? availableInnerWidth : availableInnerHeight;
float availableInnerCrossDim = isMainAxisRow ? availableInnerHeight : availableInnerWidth;
// STEP 3: DETERMINE FLEX BASIS FOR EACH ITEM
CSSNode child;
int i;
float childWidth;
float childHeight;
CSSMeasureMode childWidthMeasureMode;
CSSMeasureMode childHeightMeasureMode;
for (i = 0; i < childCount; i++) {
child = node.getChildAt(i);
if (performLayout) {
// Set the initial position (relative to the parent).
CSSDirection childDirection = resolveDirection(child, direction);
setPosition(child, childDirection);
}
// Absolute-positioned children don't participate in flex layout. Add them
// to a list that we can process later.
if (child.style.positionType == CSSPositionType.ABSOLUTE) {
// Store a private linked list of absolutely positioned children
// so that we can efficiently traverse them later.
if (firstAbsoluteChild == null) {
firstAbsoluteChild = child;
}
if (currentAbsoluteChild != null) {
currentAbsoluteChild.nextChild = child;
}
currentAbsoluteChild = child;
child.nextChild = null;
} else {
if (isMainAxisRow && (child.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0)) {
// The width is definite, so use that as the flex basis.
child.layout.computedFlexBasis = Math.max(child.style.dimensions[DIMENSION_WIDTH], ((child.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + child.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW])) + (child.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]) + child.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]))));
} else if (!isMainAxisRow && (child.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) {
// The height is definite, so use that as the flex basis.
child.layout.computedFlexBasis = Math.max(child.style.dimensions[DIMENSION_HEIGHT], ((child.style.padding.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + child.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) + (child.style.padding.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]) + child.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]))));
} else if (!isFlexBasisAuto(child) && !Float.isNaN(availableInnerMainDim)) {
// If the basis isn't 'auto', it is assumed to be zero.
child.layout.computedFlexBasis = Math.max(child.style.flexBasis, ((child.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (child.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + child.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))));
} else {
// Compute the flex basis and hypothetical main size (i.e. the clamped flex basis).
childWidth = CSSConstants.UNDEFINED;
childHeight = CSSConstants.UNDEFINED;
childWidthMeasureMode = CSSMeasureMode.UNDEFINED;
childHeightMeasureMode = CSSMeasureMode.UNDEFINED;
if ((child.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0)) {
childWidth = child.style.dimensions[DIMENSION_WIDTH] + (child.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + child.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
childWidthMeasureMode = CSSMeasureMode.EXACTLY;
}
if ((child.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) {
childHeight = child.style.dimensions[DIMENSION_HEIGHT] + (child.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + child.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
childHeightMeasureMode = CSSMeasureMode.EXACTLY;
}
// The W3C spec doesn't say anything about the 'overflow' property,
// but all major browsers appear to implement the following logic.
if ((!isMainAxisRow && node.style.overflow == CSSOverflow.SCROLL) || node.style.overflow != CSSOverflow.SCROLL) {
if (Float.isNaN(childWidth) && !Float.isNaN(availableInnerWidth)) {
childWidth = availableInnerWidth;
childWidthMeasureMode = CSSMeasureMode.AT_MOST;
}
}
if ((isMainAxisRow && node.style.overflow == CSSOverflow.SCROLL) || node.style.overflow != CSSOverflow.SCROLL) {
if (Float.isNaN(childHeight) && !Float.isNaN(availableInnerHeight)) {
childHeight = availableInnerHeight;
childHeightMeasureMode = CSSMeasureMode.AT_MOST;
}
}
// If child has no defined size in the cross axis and is set to stretch, set the cross
// axis to be measured exactly with the available inner width
if (!isMainAxisRow &&
!Float.isNaN(availableInnerWidth) &&
!(child.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0) &&
widthMeasureMode == CSSMeasureMode.EXACTLY &&
getAlignItem(node, child) == CSSAlign.STRETCH) {
childWidth = availableInnerWidth;
childWidthMeasureMode = CSSMeasureMode.EXACTLY;
}
if (isMainAxisRow &&
!Float.isNaN(availableInnerHeight) &&
!(child.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0) &&
heightMeasureMode == CSSMeasureMode.EXACTLY &&
getAlignItem(node, child) == CSSAlign.STRETCH) {
childHeight = availableInnerHeight;
childHeightMeasureMode = CSSMeasureMode.EXACTLY;
}
// Measure the child
layoutNodeInternal(layoutContext, child, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, false, "measure");
child.layout.computedFlexBasis = Math.max(isMainAxisRow ? child.layout.measuredDimensions[DIMENSION_WIDTH] : child.layout.measuredDimensions[DIMENSION_HEIGHT], ((child.style.padding.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) + (child.style.padding.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]) + child.style.border.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]))));
}
}
}
// STEP 4: COLLECT FLEX ITEMS INTO FLEX LINES
// Indexes of children that represent the first and last items in the line.
int startOfLineIndex = 0;
int endOfLineIndex = 0;
// Number of lines.
int lineCount = 0;
// Accumulated cross dimensions of all lines so far.
float totalLineCrossDim = 0;
// Max main dimension of all the lines.
float maxLineMainDim = 0;
while (endOfLineIndex < childCount) {
// Number of items on the currently line. May be different than the difference
// between start and end indicates because we skip over absolute-positioned items.
int itemsOnLine = 0;
// sizeConsumedOnCurrentLine is accumulation of the dimensions and margin
// of all the children on the current line. This will be used in order to
// either set the dimensions of the node if none already exist or to compute
// the remaining space left for the flexible children.
float sizeConsumedOnCurrentLine = 0;
float totalFlexGrowFactors = 0;
float totalFlexShrinkScaledFactors = 0;
i = startOfLineIndex;
// Maintain a linked list of the child nodes that can shrink and/or grow.
CSSNode firstRelativeChild = null;
CSSNode currentRelativeChild = null;
// Add items to the current line until it's full or we run out of items.
while (i < childCount) {
child = node.getChildAt(i);
child.lineIndex = lineCount;
if (child.style.positionType != CSSPositionType.ABSOLUTE) {
float outerFlexBasis = child.layout.computedFlexBasis + (child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]));
// If this is a multi-line flow and this item pushes us over the available size, we've
// hit the end of the current line. Break out of the loop and lay out the current line.
if (sizeConsumedOnCurrentLine + outerFlexBasis > availableInnerMainDim && isNodeFlexWrap && itemsOnLine > 0) {
break;
}
sizeConsumedOnCurrentLine += outerFlexBasis;
itemsOnLine++;
if ((child.style.positionType == CSSPositionType.RELATIVE && (child.style.flexGrow != 0 || child.style.flexShrink != 0))) {
totalFlexGrowFactors += getFlexGrowFactor(child);
// Unlike the grow factor, the shrink factor is scaled relative to the child
// dimension.
totalFlexShrinkScaledFactors += getFlexShrinkFactor(child) * child.layout.computedFlexBasis;
}
// Store a private linked list of children that need to be layed out.
if (firstRelativeChild == null) {
firstRelativeChild = child;
}
if (currentRelativeChild != null) {
currentRelativeChild.nextChild = child;
}
currentRelativeChild = child;
child.nextChild = null;
}
i++;
endOfLineIndex++;
}
// If we don't need to measure the cross axis, we can skip the entire flex step.
boolean canSkipFlex = !performLayout && measureModeCrossDim == CSSMeasureMode.EXACTLY;
// In order to position the elements in the main axis, we have two
// controls. The space between the beginning and the first element
// and the space between each two elements.
float leadingMainDim = 0;
float betweenMainDim = 0;
// STEP 5: RESOLVING FLEXIBLE LENGTHS ON MAIN AXIS
// Calculate the remaining available space that needs to be allocated.
// If the main dimension size isn't known, it is computed based on
// the line length, so there's no more space left to distribute.
float remainingFreeSpace = 0;
if (!Float.isNaN(availableInnerMainDim)) {
remainingFreeSpace = availableInnerMainDim - sizeConsumedOnCurrentLine;
} else if (sizeConsumedOnCurrentLine < 0) {
// availableInnerMainDim is indefinite which means the node is being sized based on its content.
// sizeConsumedOnCurrentLine is negative which means the node will allocate 0 pixels for
// its content. Consequently, remainingFreeSpace is 0 - sizeConsumedOnCurrentLine.
remainingFreeSpace = -sizeConsumedOnCurrentLine;
}
float originalRemainingFreeSpace = remainingFreeSpace;
float deltaFreeSpace = 0;
if (!canSkipFlex) {
float childFlexBasis;
float flexShrinkScaledFactor;
float flexGrowFactor;
float baseMainSize;
float boundMainSize;
// Do two passes over the flex items to figure out how to distribute the remaining space.
// The first pass finds the items whose min/max constraints trigger, freezes them at those
// sizes, and excludes those sizes from the remaining space. The second pass sets the size
// of each flexible item. It distributes the remaining space amongst the items whose min/max
// constraints didn't trigger in pass 1. For the other items, it sets their sizes by forcing
// their min/max constraints to trigger again.
//
// This two pass approach for resolving min/max constraints deviates from the spec. The
// spec (https://www.w3.org/TR/css-flexbox-1/#resolve-flexible-lengths) describes a process
// that needs to be repeated a variable number of times. The algorithm implemented here
// won't handle all cases but it was simpler to implement and it mitigates performance
// concerns because we know exactly how many passes it'll do.
// First pass: detect the flex items whose min/max constraints trigger
float deltaFlexShrinkScaledFactors = 0;
float deltaFlexGrowFactors = 0;
currentRelativeChild = firstRelativeChild;
while (currentRelativeChild != null) {
childFlexBasis = currentRelativeChild.layout.computedFlexBasis;
if (remainingFreeSpace < 0) {
flexShrinkScaledFactor = getFlexShrinkFactor(currentRelativeChild) * childFlexBasis;
// Is this child able to shrink?
if (flexShrinkScaledFactor != 0) {
baseMainSize = childFlexBasis +
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor;
boundMainSize = boundAxis(currentRelativeChild, mainAxis, baseMainSize);
if (baseMainSize != boundMainSize) {
// By excluding this item's size and flex factor from remaining, this item's
// min/max constraints should also trigger in the second pass resulting in the
// item's size calculation being identical in the first and second passes.
deltaFreeSpace -= boundMainSize - childFlexBasis;
deltaFlexShrinkScaledFactors -= flexShrinkScaledFactor;
}
}
} else if (remainingFreeSpace > 0) {
flexGrowFactor = getFlexGrowFactor(currentRelativeChild);
// Is this child able to grow?
if (flexGrowFactor != 0) {
baseMainSize = childFlexBasis +
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor;
boundMainSize = boundAxis(currentRelativeChild, mainAxis, baseMainSize);
if (baseMainSize != boundMainSize) {
// By excluding this item's size and flex factor from remaining, this item's
// min/max constraints should also trigger in the second pass resulting in the
// item's size calculation being identical in the first and second passes.
deltaFreeSpace -= boundMainSize - childFlexBasis;
deltaFlexGrowFactors -= flexGrowFactor;
}
}
}
currentRelativeChild = currentRelativeChild.nextChild;
}
totalFlexShrinkScaledFactors += deltaFlexShrinkScaledFactors;
totalFlexGrowFactors += deltaFlexGrowFactors;
remainingFreeSpace += deltaFreeSpace;
// Second pass: resolve the sizes of the flexible items
deltaFreeSpace = 0;
currentRelativeChild = firstRelativeChild;
while (currentRelativeChild != null) {
childFlexBasis = currentRelativeChild.layout.computedFlexBasis;
float updatedMainSize = childFlexBasis;
if (remainingFreeSpace < 0) {
flexShrinkScaledFactor = getFlexShrinkFactor(currentRelativeChild) * childFlexBasis;
// Is this child able to shrink?
if (flexShrinkScaledFactor != 0) {
updatedMainSize = boundAxis(currentRelativeChild, mainAxis, childFlexBasis +
remainingFreeSpace / totalFlexShrinkScaledFactors * flexShrinkScaledFactor);
}
} else if (remainingFreeSpace > 0) {
flexGrowFactor = getFlexGrowFactor(currentRelativeChild);
// Is this child able to grow?
if (flexGrowFactor != 0) {
updatedMainSize = boundAxis(currentRelativeChild, mainAxis, childFlexBasis +
remainingFreeSpace / totalFlexGrowFactors * flexGrowFactor);
}
}
deltaFreeSpace -= updatedMainSize - childFlexBasis;
if (isMainAxisRow) {
childWidth = updatedMainSize + (currentRelativeChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + currentRelativeChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
childWidthMeasureMode = CSSMeasureMode.EXACTLY;
if (!Float.isNaN(availableInnerCrossDim) &&
!(currentRelativeChild.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0) &&
heightMeasureMode == CSSMeasureMode.EXACTLY &&
getAlignItem(node, currentRelativeChild) == CSSAlign.STRETCH) {
childHeight = availableInnerCrossDim;
childHeightMeasureMode = CSSMeasureMode.EXACTLY;
} else if (!(currentRelativeChild.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) {
childHeight = availableInnerCrossDim;
childHeightMeasureMode = Float.isNaN(childHeight) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.AT_MOST;
} else {
childHeight = currentRelativeChild.style.dimensions[DIMENSION_HEIGHT] + (currentRelativeChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + currentRelativeChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
childHeightMeasureMode = CSSMeasureMode.EXACTLY;
}
} else {
childHeight = updatedMainSize + (currentRelativeChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + currentRelativeChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
childHeightMeasureMode = CSSMeasureMode.EXACTLY;
if (!Float.isNaN(availableInnerCrossDim) &&
!(currentRelativeChild.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0) &&
widthMeasureMode == CSSMeasureMode.EXACTLY &&
getAlignItem(node, currentRelativeChild) == CSSAlign.STRETCH) {
childWidth = availableInnerCrossDim;
childWidthMeasureMode = CSSMeasureMode.EXACTLY;
} else if (!(currentRelativeChild.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0)) {
childWidth = availableInnerCrossDim;
childWidthMeasureMode = Float.isNaN(childWidth) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.AT_MOST;
} else {
childWidth = currentRelativeChild.style.dimensions[DIMENSION_WIDTH] + (currentRelativeChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + currentRelativeChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
childWidthMeasureMode = CSSMeasureMode.EXACTLY;
}
}
boolean requiresStretchLayout = !(currentRelativeChild.style.dimensions[dim[crossAxis]] >= 0.0) &&
getAlignItem(node, currentRelativeChild) == CSSAlign.STRETCH;
// Recursively call the layout algorithm for this child with the updated main size.
layoutNodeInternal(layoutContext, currentRelativeChild, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, performLayout && !requiresStretchLayout, "flex");
currentRelativeChild = currentRelativeChild.nextChild;
}
}
remainingFreeSpace = originalRemainingFreeSpace + deltaFreeSpace;
// STEP 6: MAIN-AXIS JUSTIFICATION & CROSS-AXIS SIZE DETERMINATION
// At this point, all the children have their dimensions set in the main axis.
// Their dimensions are also set in the cross axis with the exception of items
// that are aligned "stretch". We need to compute these stretch values and
// set the final positions.
// If we are using "at most" rules in the main axis, we won't distribute
// any remaining space at this point.
if (measureModeMainDim == CSSMeasureMode.AT_MOST) {
remainingFreeSpace = 0;
}
// Use justifyContent to figure out how to allocate the remaining space
// available in the main axis.
if (justifyContent != CSSJustify.FLEX_START) {
if (justifyContent == CSSJustify.CENTER) {
leadingMainDim = remainingFreeSpace / 2;
} else if (justifyContent == CSSJustify.FLEX_END) {
leadingMainDim = remainingFreeSpace;
} else if (justifyContent == CSSJustify.SPACE_BETWEEN) {
remainingFreeSpace = Math.max(remainingFreeSpace, 0);
if (itemsOnLine > 1) {
betweenMainDim = remainingFreeSpace / (itemsOnLine - 1);
} else {
betweenMainDim = 0;
}
} else if (justifyContent == CSSJustify.SPACE_AROUND) {
// Space on the edges is half of the space between elements
betweenMainDim = remainingFreeSpace / itemsOnLine;
leadingMainDim = betweenMainDim / 2;
}
}
float mainDim = leadingPaddingAndBorderMain + leadingMainDim;
float crossDim = 0;
for (i = startOfLineIndex; i < endOfLineIndex; ++i) {
child = node.getChildAt(i);
if (child.style.positionType == CSSPositionType.ABSOLUTE &&
!Float.isNaN(child.style.position.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]))) {
if (performLayout) {
// In case the child is position absolute and has left/top being
// defined, we override the position to whatever the user said
// (and margin/border).
child.layout.position[pos[mainAxis]] =
(Float.isNaN(child.style.position.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) ?
0 :
child.style.position.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis])) +
node.style.border.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) +
child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]);
}
} else {
if (performLayout) {
// If the child is position absolute (without top/left) or relative,
// we put it at the current accumulated offset.
child.layout.position[pos[mainAxis]] += mainDim;
}
// Now that we placed the element, we need to update the variables.
// We need to do that only for relative elements. Absolute elements
// do not take part in that phase.
if (child.style.positionType == CSSPositionType.RELATIVE) {
if (canSkipFlex) {
// If we skipped the flex step, then we can't rely on the measuredDims because
// they weren't computed. This means we can't call getDimWithMargin.
mainDim += betweenMainDim + (child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])) + child.layout.computedFlexBasis;
crossDim = availableInnerCrossDim;
} else {
// The main dimension is the sum of all the elements dimension plus
// the spacing.
mainDim += betweenMainDim + (child.layout.measuredDimensions[dim[mainAxis]] + child.style.margin.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]) + child.style.margin.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]));
// The cross dimension is the max of the elements dimension since there
// can only be one element in that cross dimension.
crossDim = Math.max(crossDim, (child.layout.measuredDimensions[dim[crossAxis]] + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])));
}
}
}
}
mainDim += trailingPaddingAndBorderMain;
float containerCrossAxis = availableInnerCrossDim;
if (measureModeCrossDim == CSSMeasureMode.UNDEFINED || measureModeCrossDim == CSSMeasureMode.AT_MOST) {
// Compute the cross axis from the max cross dimension of the children.
containerCrossAxis = boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) - paddingAndBorderAxisCross;
if (measureModeCrossDim == CSSMeasureMode.AT_MOST) {
containerCrossAxis = Math.min(containerCrossAxis, availableInnerCrossDim);
}
}
// If there's no flex wrap, the cross dimension is defined by the container.
if (!isNodeFlexWrap && measureModeCrossDim == CSSMeasureMode.EXACTLY) {
crossDim = availableInnerCrossDim;
}
// Clamp to the min/max size specified on the container.
crossDim = boundAxis(node, crossAxis, crossDim + paddingAndBorderAxisCross) - paddingAndBorderAxisCross;
// STEP 7: CROSS-AXIS ALIGNMENT
// We can skip child alignment if we're just measuring the container.
if (performLayout) {
for (i = startOfLineIndex; i < endOfLineIndex; ++i) {
child = node.getChildAt(i);
if (child.style.positionType == CSSPositionType.ABSOLUTE) {
// If the child is absolutely positioned and has a top/left/bottom/right
// set, override all the previously computed positions to set it correctly.
if (!Float.isNaN(child.style.position.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]))) {
child.layout.position[pos[crossAxis]] =
(Float.isNaN(child.style.position.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) ?
0 :
child.style.position.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis])) +
node.style.border.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) +
child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]);
} else {
child.layout.position[pos[crossAxis]] = leadingPaddingAndBorderCross +
child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]);
}
} else {
float leadingCrossDim = leadingPaddingAndBorderCross;
// For a relative children, we're either using alignItems (parent) or
// alignSelf (child) in order to determine the position in the cross axis
CSSAlign alignItem = getAlignItem(node, child);
// If the child uses align stretch, we need to lay it out one more time, this time
// forcing the cross-axis size to be the computed cross size for the current line.
if (alignItem == CSSAlign.STRETCH) {
childWidth = child.layout.measuredDimensions[DIMENSION_WIDTH] + (child.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + child.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
childHeight = child.layout.measuredDimensions[DIMENSION_HEIGHT] + (child.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + child.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
boolean isCrossSizeDefinite = false;
if (isMainAxisRow) {
isCrossSizeDefinite = (child.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0);
childHeight = crossDim;
} else {
isCrossSizeDefinite = (child.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0);
childWidth = crossDim;
}
// If the child defines a definite size for its cross axis, there's no need to stretch.
if (!isCrossSizeDefinite) {
childWidthMeasureMode = Float.isNaN(childWidth) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.EXACTLY;
childHeightMeasureMode = Float.isNaN(childHeight) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.EXACTLY;
layoutNodeInternal(layoutContext, child, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, true, "stretch");
}
} else if (alignItem != CSSAlign.FLEX_START) {
float remainingCrossDim = containerCrossAxis - (child.layout.measuredDimensions[dim[crossAxis]] + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]));
if (alignItem == CSSAlign.CENTER) {
leadingCrossDim += remainingCrossDim / 2;
} else { // CSSAlign.FLEX_END
leadingCrossDim += remainingCrossDim;
}
}
// And we apply the position
child.layout.position[pos[crossAxis]] += totalLineCrossDim + leadingCrossDim;
}
}
}
totalLineCrossDim += crossDim;
maxLineMainDim = Math.max(maxLineMainDim, mainDim);
// Reset variables for new line.
lineCount++;
startOfLineIndex = endOfLineIndex;
endOfLineIndex = startOfLineIndex;
}
// STEP 8: MULTI-LINE CONTENT ALIGNMENT
if (lineCount > 1 && performLayout && !Float.isNaN(availableInnerCrossDim)) {
float remainingAlignContentDim = availableInnerCrossDim - totalLineCrossDim;
float crossDimLead = 0;
float currentLead = leadingPaddingAndBorderCross;
CSSAlign alignContent = node.style.alignContent;
if (alignContent == CSSAlign.FLEX_END) {
currentLead += remainingAlignContentDim;
} else if (alignContent == CSSAlign.CENTER) {
currentLead += remainingAlignContentDim / 2;
} else if (alignContent == CSSAlign.STRETCH) {
if (availableInnerCrossDim > totalLineCrossDim) {
crossDimLead = (remainingAlignContentDim / lineCount);
}
}
int endIndex = 0;
for (i = 0; i < lineCount; ++i) {
int startIndex = endIndex;
int j;
// compute the line's height and find the endIndex
float lineHeight = 0;
for (j = startIndex; j < childCount; ++j) {
child = node.getChildAt(j);
if (child.style.positionType != CSSPositionType.RELATIVE) {
continue;
}
if (child.lineIndex != i) {
break;
}
if ((child.layout.measuredDimensions[dim[crossAxis]] >= 0.0)) {
lineHeight = Math.max(lineHeight,
child.layout.measuredDimensions[dim[crossAxis]] + (child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]) + child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])));
}
}
endIndex = j;
lineHeight += crossDimLead;
if (performLayout) {
for (j = startIndex; j < endIndex; ++j) {
child = node.getChildAt(j);
if (child.style.positionType != CSSPositionType.RELATIVE) {
continue;
}
CSSAlign alignContentAlignItem = getAlignItem(node, child);
if (alignContentAlignItem == CSSAlign.FLEX_START) {
child.layout.position[pos[crossAxis]] = currentLead + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]);
} else if (alignContentAlignItem == CSSAlign.FLEX_END) {
child.layout.position[pos[crossAxis]] = currentLead + lineHeight - child.style.margin.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]) - child.layout.measuredDimensions[dim[crossAxis]];
} else if (alignContentAlignItem == CSSAlign.CENTER) {
childHeight = child.layout.measuredDimensions[dim[crossAxis]];
child.layout.position[pos[crossAxis]] = currentLead + (lineHeight - childHeight) / 2;
} else if (alignContentAlignItem == CSSAlign.STRETCH) {
child.layout.position[pos[crossAxis]] = currentLead + child.style.margin.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]);
// TODO(prenaux): Correctly set the height of items with indefinite
// (auto) crossAxis dimension.
}
}
}
currentLead += lineHeight;
}
}
// STEP 9: COMPUTING FINAL DIMENSIONS
node.layout.measuredDimensions[DIMENSION_WIDTH] = boundAxis(node, CSS_FLEX_DIRECTION_ROW, availableWidth - marginAxisRow);
node.layout.measuredDimensions[DIMENSION_HEIGHT] = boundAxis(node, CSS_FLEX_DIRECTION_COLUMN, availableHeight - marginAxisColumn);
// If the user didn't specify a width or height for the node, set the
// dimensions based on the children.
if (measureModeMainDim == CSSMeasureMode.UNDEFINED) {
// Clamp the size to the min/max size, if specified, and make sure it
// doesn't go below the padding and border amount.
node.layout.measuredDimensions[dim[mainAxis]] = boundAxis(node, mainAxis, maxLineMainDim);
} else if (measureModeMainDim == CSSMeasureMode.AT_MOST) {
node.layout.measuredDimensions[dim[mainAxis]] = Math.max(
Math.min(availableInnerMainDim + paddingAndBorderAxisMain,
boundAxisWithinMinAndMax(node, mainAxis, maxLineMainDim)),
paddingAndBorderAxisMain);
}
if (measureModeCrossDim == CSSMeasureMode.UNDEFINED) {
// Clamp the size to the min/max size, if specified, and make sure it
// doesn't go below the padding and border amount.
node.layout.measuredDimensions[dim[crossAxis]] = boundAxis(node, crossAxis, totalLineCrossDim + paddingAndBorderAxisCross);
} else if (measureModeCrossDim == CSSMeasureMode.AT_MOST) {
node.layout.measuredDimensions[dim[crossAxis]] = Math.max(
Math.min(availableInnerCrossDim + paddingAndBorderAxisCross,
boundAxisWithinMinAndMax(node, crossAxis, totalLineCrossDim + paddingAndBorderAxisCross)),
paddingAndBorderAxisCross);
}
// STEP 10: SIZING AND POSITIONING ABSOLUTE CHILDREN
currentAbsoluteChild = firstAbsoluteChild;
while (currentAbsoluteChild != null) {
// Now that we know the bounds of the container, perform layout again on the
// absolutely-positioned children.
if (performLayout) {
childWidth = CSSConstants.UNDEFINED;
childHeight = CSSConstants.UNDEFINED;
if ((currentAbsoluteChild.style.dimensions[dim[CSS_FLEX_DIRECTION_ROW]] >= 0.0)) {
childWidth = currentAbsoluteChild.style.dimensions[DIMENSION_WIDTH] + (currentAbsoluteChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + currentAbsoluteChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
} else {
// If the child doesn't have a specified width, compute the width based on the left/right offsets if they're defined.
if (!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW])) &&
!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]))) {
childWidth = node.layout.measuredDimensions[DIMENSION_WIDTH] -
(node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW])) -
((Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW])) ?
0 :
currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW])) +
(Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW])) ?
0 :
currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW])));
childWidth = boundAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_ROW, childWidth);
}
}
if ((currentAbsoluteChild.style.dimensions[dim[CSS_FLEX_DIRECTION_COLUMN]] >= 0.0)) {
childHeight = currentAbsoluteChild.style.dimensions[DIMENSION_HEIGHT] + (currentAbsoluteChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + currentAbsoluteChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
} else {
// If the child doesn't have a specified height, compute the height based on the top/bottom offsets if they're defined.
if (!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) &&
!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]))) {
childHeight = node.layout.measuredDimensions[DIMENSION_HEIGHT] -
(node.style.border.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + node.style.border.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])) -
((Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) ?
0 :
currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN])) +
(Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])) ?
0 :
currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN])));
childHeight = boundAxis(currentAbsoluteChild, CSS_FLEX_DIRECTION_COLUMN, childHeight);
}
}
// If we're still missing one or the other dimension, measure the content.
if (Float.isNaN(childWidth) || Float.isNaN(childHeight)) {
childWidthMeasureMode = Float.isNaN(childWidth) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.EXACTLY;
childHeightMeasureMode = Float.isNaN(childHeight) ? CSSMeasureMode.UNDEFINED : CSSMeasureMode.EXACTLY;
// According to the spec, if the main size is not definite and the
// child's inline axis is parallel to the main axis (i.e. it's
// horizontal), the child should be sized using "UNDEFINED" in
// the main size. Otherwise use "AT_MOST" in the cross axis.
if (!isMainAxisRow && Float.isNaN(childWidth) && !Float.isNaN(availableInnerWidth)) {
childWidth = availableInnerWidth;
childWidthMeasureMode = CSSMeasureMode.AT_MOST;
}
layoutNodeInternal(layoutContext, currentAbsoluteChild, childWidth, childHeight, direction, childWidthMeasureMode, childHeightMeasureMode, false, "abs-measure");
childWidth = currentAbsoluteChild.layout.measuredDimensions[DIMENSION_WIDTH] + (currentAbsoluteChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_ROW], leading[CSS_FLEX_DIRECTION_ROW]) + currentAbsoluteChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_ROW], trailing[CSS_FLEX_DIRECTION_ROW]));
childHeight = currentAbsoluteChild.layout.measuredDimensions[DIMENSION_HEIGHT] + (currentAbsoluteChild.style.margin.getWithFallback(leadingSpacing[CSS_FLEX_DIRECTION_COLUMN], leading[CSS_FLEX_DIRECTION_COLUMN]) + currentAbsoluteChild.style.margin.getWithFallback(trailingSpacing[CSS_FLEX_DIRECTION_COLUMN], trailing[CSS_FLEX_DIRECTION_COLUMN]));
}
layoutNodeInternal(layoutContext, currentAbsoluteChild, childWidth, childHeight, direction, CSSMeasureMode.EXACTLY, CSSMeasureMode.EXACTLY, true, "abs-layout");
if (!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])) &&
Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[mainAxis], leading[mainAxis]))) {
currentAbsoluteChild.layout.position[leading[mainAxis]] =
node.layout.measuredDimensions[dim[mainAxis]] -
currentAbsoluteChild.layout.measuredDimensions[dim[mainAxis]] -
(Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis])) ? 0 : currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[mainAxis], trailing[mainAxis]));
}
if (!Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])) &&
Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(leadingSpacing[crossAxis], leading[crossAxis]))) {
currentAbsoluteChild.layout.position[leading[crossAxis]] =
node.layout.measuredDimensions[dim[crossAxis]] -
currentAbsoluteChild.layout.measuredDimensions[dim[crossAxis]] -
(Float.isNaN(currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis])) ? 0 : currentAbsoluteChild.style.position.getWithFallback(trailingSpacing[crossAxis], trailing[crossAxis]));
}
}
currentAbsoluteChild = currentAbsoluteChild.nextChild;
}
// STEP 11: SETTING TRAILING POSITIONS FOR CHILDREN
if (performLayout) {
boolean needsMainTrailingPos = false;
boolean needsCrossTrailingPos = false;
if (mainAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
mainAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
needsMainTrailingPos = true;
}
if (crossAxis == CSS_FLEX_DIRECTION_ROW_REVERSE ||
crossAxis == CSS_FLEX_DIRECTION_COLUMN_REVERSE) {
needsCrossTrailingPos = true;
}
// Set trailing position if necessary.
if (needsMainTrailingPos || needsCrossTrailingPos) {
for (i = 0; i < childCount; ++i) {
child = node.getChildAt(i);
if (needsMainTrailingPos) {
child.layout.position[trailing[mainAxis]] =
node.layout.measuredDimensions[dim[mainAxis]] -
child.layout.measuredDimensions[dim[mainAxis]] -
child.layout.position[pos[mainAxis]];
}
if (needsCrossTrailingPos) {
child.layout.position[trailing[crossAxis]] =
node.layout.measuredDimensions[dim[crossAxis]] -
child.layout.measuredDimensions[dim[crossAxis]] -
child.layout.position[pos[crossAxis]];
}
}
}
}
}
}